Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Chaiyasombat
1
58 kgvan Engelen
2
51 kgDe Rossi
3
70 kgSu
4
64 kgSexton
9
71 kgOthman
10
57 kgMisbah
16
56 kgClark
24
68 kgKim
29
68 kgFrancisco
31
62 kgCahyadi
38
52 kgChawchiangkwang
39
64 kgBudyak
40
53 kgCarman
44
66 kgSirironnachai
46
61 kgEvans
52
63 kgLiphongyu
54
61 kgTzortzakis
56
80 kgCarstensen
59
69 kgLakasek
61
71 kgKergozou De La Boessiere
75
74 kg
1
58 kgvan Engelen
2
51 kgDe Rossi
3
70 kgSu
4
64 kgSexton
9
71 kgOthman
10
57 kgMisbah
16
56 kgClark
24
68 kgKim
29
68 kgFrancisco
31
62 kgCahyadi
38
52 kgChawchiangkwang
39
64 kgBudyak
40
53 kgCarman
44
66 kgSirironnachai
46
61 kgEvans
52
63 kgLiphongyu
54
61 kgTzortzakis
56
80 kgCarstensen
59
69 kgLakasek
61
71 kgKergozou De La Boessiere
75
74 kg
Weight (KG) →
Result →
80
51
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | CHAIYASOMBAT Thanakhan | 58 |
2 | VAN ENGELEN Adne | 51 |
3 | DE ROSSI Lucas | 70 |
4 | SU Haoyu | 64 |
9 | SEXTON Tom | 71 |
10 | OTHMAN Muhamad Afiq Husaine | 57 |
16 | MISBAH Muhsin Al Redha | 56 |
24 | CLARK Boris | 68 |
29 | KIM Euro | 68 |
31 | FRANCISCO Jude Gabriel | 62 |
38 | CAHYADI Aiman | 52 |
39 | CHAWCHIANGKWANG Peerapol | 64 |
40 | BUDYAK Anatoliy | 53 |
44 | CARMAN Ben | 66 |
46 | SIRIRONNACHAI Sarawut | 61 |
52 | EVANS Alexander | 63 |
54 | LIPHONGYU Navuti | 61 |
56 | TZORTZAKIS Polychronis | 80 |
59 | CARSTENSEN Lucas | 69 |
61 | LAKASEK Irwandie | 71 |
75 | KERGOZOU DE LA BOESSIERE Nick | 74 |