Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -4.6 * weight + 1118
This means that on average for every extra kilogram weight a rider loses -4.6 positions in the result.
Bortolami
2
73 kgBaldato
4
60 kgCenghialta
8
73 kgJaskuła
990
76 kgChiappucci
990
67 kgFondriest
990
70 kgBugno
990
68 kgBourguignon
990
72 kgPantani
990
58 kgLelli
990
69 kgRobin
990
63 kgCasagrande
990
64 kgTonkov
990
70 kgKonyshev
990
77 kgBelli
990
64 kgRebellin
990
63 kg
2
73 kgBaldato
4
60 kgCenghialta
8
73 kgJaskuła
990
76 kgChiappucci
990
67 kgFondriest
990
70 kgBugno
990
68 kgBourguignon
990
72 kgPantani
990
58 kgLelli
990
69 kgRobin
990
63 kgCasagrande
990
64 kgTonkov
990
70 kgKonyshev
990
77 kgBelli
990
64 kgRebellin
990
63 kg
Weight (KG) →
Result →
77
58
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | BORTOLAMI Gianluca | 73 |
4 | BALDATO Fabio | 60 |
8 | CENGHIALTA Bruno | 73 |
990 | JASKUŁA Zenon | 76 |
990 | CHIAPPUCCI Claudio | 67 |
990 | FONDRIEST Maurizio | 70 |
990 | BUGNO Gianni | 68 |
990 | BOURGUIGNON Thierry | 72 |
990 | PANTANI Marco | 58 |
990 | LELLI Massimiliano | 69 |
990 | ROBIN Jean-Cyril | 63 |
990 | CASAGRANDE Francesco | 64 |
990 | TONKOV Pavel | 70 |
990 | KONYSHEV Dmitry | 77 |
990 | BELLI Wladimir | 64 |
990 | REBELLIN Davide | 63 |