Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 52.5 * weight - 2935
This means that on average for every extra kilogram weight a rider loses 52.5 positions in the result.
Gotti
4
65 kgBartoli
5
65 kgCasagrande
6
64 kgArgentin
7
66 kgRebellin
8
63 kgChiappucci
9
67 kgPantani
10
58 kgImboden
990
70 kgCenghialta
990
73 kgBerzin
990
64 kgBugno
990
68 kgBourguignon
990
72 kgShefer
990
68 kgSciandri
990
75 kgPiccoli
990
64 kgTonkov
990
70 kgZanini
990
80 kgBonča
990
63 kg
4
65 kgBartoli
5
65 kgCasagrande
6
64 kgArgentin
7
66 kgRebellin
8
63 kgChiappucci
9
67 kgPantani
10
58 kgImboden
990
70 kgCenghialta
990
73 kgBerzin
990
64 kgBugno
990
68 kgBourguignon
990
72 kgShefer
990
68 kgSciandri
990
75 kgPiccoli
990
64 kgTonkov
990
70 kgZanini
990
80 kgBonča
990
63 kg
Weight (KG) →
Result →
80
58
4
990
# | Rider | Weight (KG) |
---|---|---|
4 | GOTTI Ivan | 65 |
5 | BARTOLI Michele | 65 |
6 | CASAGRANDE Francesco | 64 |
7 | ARGENTIN Moreno | 66 |
8 | REBELLIN Davide | 63 |
9 | CHIAPPUCCI Claudio | 67 |
10 | PANTANI Marco | 58 |
990 | IMBODEN Heinz | 70 |
990 | CENGHIALTA Bruno | 73 |
990 | BERZIN Evgeni | 64 |
990 | BUGNO Gianni | 68 |
990 | BOURGUIGNON Thierry | 72 |
990 | SHEFER Alexandre | 68 |
990 | SCIANDRI Maximilian | 75 |
990 | PICCOLI Mariano | 64 |
990 | TONKOV Pavel | 70 |
990 | ZANINI Stefano | 80 |
990 | BONČA Valter | 63 |