Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Foliforov
1
61 kgOrrico
2
70 kgPirazzi
3
62 kgRoy
4
70 kgPinot
5
63 kgFrankiny
6
67 kgHoward
7
72 kgLanda
8
61 kgAndreetta
9
69 kgFortin
10
78 kgCarthy
11
69 kgBuchmann
12
59 kgVillella
13
66 kgSchönberger
14
64 kgCataldo
15
64 kgFerrari
16
64 kgKoshevoy
17
62.5 kgNikolaev
18
66 kg
1
61 kgOrrico
2
70 kgPirazzi
3
62 kgRoy
4
70 kgPinot
5
63 kgFrankiny
6
67 kgHoward
7
72 kgLanda
8
61 kgAndreetta
9
69 kgFortin
10
78 kgCarthy
11
69 kgBuchmann
12
59 kgVillella
13
66 kgSchönberger
14
64 kgCataldo
15
64 kgFerrari
16
64 kgKoshevoy
17
62.5 kgNikolaev
18
66 kg
Weight (KG) →
Result →
78
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | FOLIFOROV Alexander | 61 |
2 | ORRICO Davide | 70 |
3 | PIRAZZI Stefano | 62 |
4 | ROY Jérémy | 70 |
5 | PINOT Thibaut | 63 |
6 | FRANKINY Kilian | 67 |
7 | HOWARD Leigh | 72 |
8 | LANDA Mikel | 61 |
9 | ANDREETTA Simone | 69 |
10 | FORTIN Filippo | 78 |
11 | CARTHY Hugh | 69 |
12 | BUCHMANN Emanuel | 59 |
13 | VILLELLA Davide | 66 |
14 | SCHÖNBERGER Sebastian | 64 |
15 | CATALDO Dario | 64 |
16 | FERRARI Fabricio | 64 |
17 | KOSHEVOY Ilia | 62.5 |
18 | NIKOLAEV Sergey | 66 |