Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Pozzovivo
1
53 kgPinot
2
63 kgRabitsch
3
69 kgFrapporti
4
69 kgO'Connor
5
67 kgCiccone
6
58 kgHermans
7
72 kgRodríguez
8
63 kgJauregui
9
60 kgSánchez
10
73 kgDupont
11
57 kgSenni
12
60 kgBerhane
13
66 kgBennett
14
58 kgBizkarra
15
53 kgVisconti
16
63 kgKrizek
17
74 kgMosca
18
65 kg
1
53 kgPinot
2
63 kgRabitsch
3
69 kgFrapporti
4
69 kgO'Connor
5
67 kgCiccone
6
58 kgHermans
7
72 kgRodríguez
8
63 kgJauregui
9
60 kgSánchez
10
73 kgDupont
11
57 kgSenni
12
60 kgBerhane
13
66 kgBennett
14
58 kgBizkarra
15
53 kgVisconti
16
63 kgKrizek
17
74 kgMosca
18
65 kg
Weight (KG) →
Result →
74
53
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | POZZOVIVO Domenico | 53 |
2 | PINOT Thibaut | 63 |
3 | RABITSCH Stephan | 69 |
4 | FRAPPORTI Marco | 69 |
5 | O'CONNOR Ben | 67 |
6 | CICCONE Giulio | 58 |
7 | HERMANS Ben | 72 |
8 | RODRÍGUEZ Óscar | 63 |
9 | JAUREGUI Quentin | 60 |
10 | SÁNCHEZ Luis León | 73 |
11 | DUPONT Hubert | 57 |
12 | SENNI Manuel | 60 |
13 | BERHANE Natnael | 66 |
14 | BENNETT George | 58 |
15 | BIZKARRA Mikel | 53 |
16 | VISCONTI Giovanni | 63 |
17 | KRIZEK Matthias | 74 |
18 | MOSCA Jacopo | 65 |