Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
O'Connor
1
67 kgPadun
2
67 kgSchlegel
3
72 kgConci
4
68 kgVlasov
5
68 kgCarboni
6
61 kgFlórez
8
57 kgBou
9
62 kgVelasco
10
59 kgRota
11
62 kgBagioli
13
64 kgDíaz
14
64 kgZimmermann
15
70 kgSobrero
16
63 kgRodríguez
17
63 kgSchinnagel
19
68 kgBarceló
20
65 kgEenkhoorn
21
72 kgGoldstein
22
61 kgFriedrich
23
71 kg
1
67 kgPadun
2
67 kgSchlegel
3
72 kgConci
4
68 kgVlasov
5
68 kgCarboni
6
61 kgFlórez
8
57 kgBou
9
62 kgVelasco
10
59 kgRota
11
62 kgBagioli
13
64 kgDíaz
14
64 kgZimmermann
15
70 kgSobrero
16
63 kgRodríguez
17
63 kgSchinnagel
19
68 kgBarceló
20
65 kgEenkhoorn
21
72 kgGoldstein
22
61 kgFriedrich
23
71 kg
Weight (KG) →
Result →
72
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | O'CONNOR Ben | 67 |
2 | PADUN Mark | 67 |
3 | SCHLEGEL Michal | 72 |
4 | CONCI Nicola | 68 |
5 | VLASOV Aleksandr | 68 |
6 | CARBONI Giovanni | 61 |
8 | FLÓREZ Miguel Eduardo | 57 |
9 | BOU Joan | 62 |
10 | VELASCO Simone | 59 |
11 | ROTA Lorenzo | 62 |
13 | BAGIOLI Nicola | 64 |
14 | DÍAZ José Manuel | 64 |
15 | ZIMMERMANN Georg | 70 |
16 | SOBRERO Matteo | 63 |
17 | RODRÍGUEZ Óscar | 63 |
19 | SCHINNAGEL Johannes | 68 |
20 | BARCELÓ Fernando | 65 |
21 | EENKHOORN Pascal | 72 |
22 | GOLDSTEIN Omer | 61 |
23 | FRIEDRICH Marco | 71 |