Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
De Marchi
1
65 kgDina
2
67 kgYates
3
58 kgThompson
4
66 kgPinot
5
63 kgVlasov
6
68 kgSivakov
7
70 kgFroome
8
68 kgSteinhauser
9
65 kgQuintana
10
58 kgGroßschartner
11
64 kgSosa
12
52 kgAmezqueta
13
63 kgStorer
14
63 kgEngelhardt
15
68 kgCarthy
16
69 kgMoscon
17
71 kgProdhomme
18
63 kgBais
19
66 kgFabbro
20
52 kgMartin
21
59 kgPernsteiner
22
55 kg
1
65 kgDina
2
67 kgYates
3
58 kgThompson
4
66 kgPinot
5
63 kgVlasov
6
68 kgSivakov
7
70 kgFroome
8
68 kgSteinhauser
9
65 kgQuintana
10
58 kgGroßschartner
11
64 kgSosa
12
52 kgAmezqueta
13
63 kgStorer
14
63 kgEngelhardt
15
68 kgCarthy
16
69 kgMoscon
17
71 kgProdhomme
18
63 kgBais
19
66 kgFabbro
20
52 kgMartin
21
59 kgPernsteiner
22
55 kg
Weight (KG) →
Result →
71
52
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DE MARCHI Alessandro | 65 |
2 | DINA Márton | 67 |
3 | YATES Simon | 58 |
4 | THOMPSON Reuben | 66 |
5 | PINOT Thibaut | 63 |
6 | VLASOV Aleksandr | 68 |
7 | SIVAKOV Pavel | 70 |
8 | FROOME Chris | 68 |
9 | STEINHAUSER Georg | 65 |
10 | QUINTANA Nairo | 58 |
11 | GROßSCHARTNER Felix | 64 |
12 | SOSA Iván Ramiro | 52 |
13 | AMEZQUETA Julen | 63 |
14 | STORER Michael | 63 |
15 | ENGELHARDT Felix | 68 |
16 | CARTHY Hugh | 69 |
17 | MOSCON Gianni | 71 |
18 | PRODHOMME Nicolas | 63 |
19 | BAIS Davide | 66 |
20 | FABBRO Matteo | 52 |
21 | MARTIN Dan | 59 |
22 | PERNSTEINER Hermann | 55 |