Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Geoghegan Hart
1
65 kgVermeulen
2
67 kgHaig
3
67 kgGall
4
66 kgCarthy
5
69 kgBuitrago
6
59 kgSivakov
7
70 kgSosa
8
52 kgCarr
9
66 kgFortunato
10
57 kgVlasov
11
68 kgParet-Peintre
12
52 kgKämna
14
65 kgSchönberger
15
64 kgGarosio
16
58 kgMartín
17
60 kgBouchard
18
63 kgCepeda
19
56 kgParet-Peintre
20
64 kg
1
65 kgVermeulen
2
67 kgHaig
3
67 kgGall
4
66 kgCarthy
5
69 kgBuitrago
6
59 kgSivakov
7
70 kgSosa
8
52 kgCarr
9
66 kgFortunato
10
57 kgVlasov
11
68 kgParet-Peintre
12
52 kgKämna
14
65 kgSchönberger
15
64 kgGarosio
16
58 kgMartín
17
60 kgBouchard
18
63 kgCepeda
19
56 kgParet-Peintre
20
64 kg
Weight (KG) →
Result →
70
52
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | GEOGHEGAN HART Tao | 65 |
2 | VERMEULEN Moran | 67 |
3 | HAIG Jack | 67 |
4 | GALL Felix | 66 |
5 | CARTHY Hugh | 69 |
6 | BUITRAGO Santiago | 59 |
7 | SIVAKOV Pavel | 70 |
8 | SOSA Iván Ramiro | 52 |
9 | CARR Simon | 66 |
10 | FORTUNATO Lorenzo | 57 |
11 | VLASOV Aleksandr | 68 |
12 | PARET-PEINTRE Valentin | 52 |
14 | KÄMNA Lennard | 65 |
15 | SCHÖNBERGER Sebastian | 64 |
16 | GAROSIO Andrea | 58 |
17 | MARTÍN Alex | 60 |
18 | BOUCHARD Geoffrey | 63 |
19 | CEPEDA Jefferson Alexander | 56 |
20 | PARET-PEINTRE Aurélien | 64 |