Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
De Marchi
1
65 kgPellaud
2
70 kgFoss
3
74 kgBais
4
66 kgHarper
5
67 kgGamper
6
80 kgChaves
7
55 kgGarosio
8
58 kgOka
9
58 kgO'Connor
10
67 kgTiberi
11
62 kgMühlberger
12
64 kgLópez
13
60 kgBou
14
62 kgThomas
17
71 kgFelline
18
68 kgYamamoto
19
63 kgKoishi
20
62 kgPoels
21
66 kgBardet
22
65 kgGhebreigzabhier
23
68 kgDonnenwirth
24
63 kgParet-Peintre
25
52 kg
1
65 kgPellaud
2
70 kgFoss
3
74 kgBais
4
66 kgHarper
5
67 kgGamper
6
80 kgChaves
7
55 kgGarosio
8
58 kgOka
9
58 kgO'Connor
10
67 kgTiberi
11
62 kgMühlberger
12
64 kgLópez
13
60 kgBou
14
62 kgThomas
17
71 kgFelline
18
68 kgYamamoto
19
63 kgKoishi
20
62 kgPoels
21
66 kgBardet
22
65 kgGhebreigzabhier
23
68 kgDonnenwirth
24
63 kgParet-Peintre
25
52 kg
Weight (KG) →
Result →
80
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | DE MARCHI Alessandro | 65 |
2 | PELLAUD Simon | 70 |
3 | FOSS Tobias | 74 |
4 | BAIS Mattia | 66 |
5 | HARPER Chris | 67 |
6 | GAMPER Patrick | 80 |
7 | CHAVES Esteban | 55 |
8 | GAROSIO Andrea | 58 |
9 | OKA Atsushi | 58 |
10 | O'CONNOR Ben | 67 |
11 | TIBERI Antonio | 62 |
12 | MÜHLBERGER Gregor | 64 |
13 | LÓPEZ Juan Pedro | 60 |
14 | BOU Joan | 62 |
17 | THOMAS Geraint | 71 |
18 | FELLINE Fabio | 68 |
19 | YAMAMOTO Masaki | 63 |
20 | KOISHI Yuma | 62 |
21 | POELS Wout | 66 |
22 | BARDET Romain | 65 |
23 | GHEBREIGZABHIER Amanuel | 68 |
24 | DONNENWIRTH Tom | 63 |
25 | PARET-PEINTRE Valentin | 52 |