Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Fairly
1
60 kgLandis
2
68 kgThomson
3
75 kgHanson
5
74 kgSulzberger
6
67 kgHowes
7
61 kgDowsett
8
75 kgCantwell
9
69 kgKemps
10
73 kgBorrajo
11
76 kgSummerhill
12
70 kgTanner
24
70 kgRosskopf
26
74 kgRoe
31
66 kgDay
42
68 kgLea
46
77 kgLapthorne
47
70 kgCalabria
49
55 kgVerschoor
51
74.5 kg
1
60 kgLandis
2
68 kgThomson
3
75 kgHanson
5
74 kgSulzberger
6
67 kgHowes
7
61 kgDowsett
8
75 kgCantwell
9
69 kgKemps
10
73 kgBorrajo
11
76 kgSummerhill
12
70 kgTanner
24
70 kgRosskopf
26
74 kgRoe
31
66 kgDay
42
68 kgLea
46
77 kgLapthorne
47
70 kgCalabria
49
55 kgVerschoor
51
74.5 kg
Weight (KG) →
Result →
77
55
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | FAIRLY Caleb | 60 |
2 | LANDIS Floyd | 68 |
3 | THOMSON Jay Robert | 75 |
5 | HANSON Ken | 74 |
6 | SULZBERGER Bernard | 67 |
7 | HOWES Alex | 61 |
8 | DOWSETT Alex | 75 |
9 | CANTWELL Jonathan | 69 |
10 | KEMPS Aaron | 73 |
11 | BORRAJO Alejandro Alberto | 76 |
12 | SUMMERHILL Daniel | 70 |
24 | TANNER David | 70 |
26 | ROSSKOPF Joey | 74 |
31 | ROE Timothy | 66 |
42 | DAY Benjamin | 68 |
46 | LEA Bobby | 77 |
47 | LAPTHORNE Darren | 70 |
49 | CALABRIA Fabio | 55 |
51 | VERSCHOOR Martijn | 74.5 |