Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Abbott
1
52 kgDuehring
4
54 kgVillumsen
5
59 kgHall
6
52 kgPoidevin
7
56 kgArmstrong
8
58 kgYonamine
11
51 kgStephens
15
55 kgThomas
17
58 kgLaws
18
54 kgKiesanowski
20
56 kgLuebke
25
54 kgPeñuela
27
53 kgPrieto
28
54 kgBergen
29
64 kgGoldman
33
64 kgJackson
37
63 kgRoorda
38
70 kgSimmonds
39
55 kgHammes
49
54 kgPilote Fortin
54
55 kgMiller
65
52 kgSaarelainen
67
58 kg
1
52 kgDuehring
4
54 kgVillumsen
5
59 kgHall
6
52 kgPoidevin
7
56 kgArmstrong
8
58 kgYonamine
11
51 kgStephens
15
55 kgThomas
17
58 kgLaws
18
54 kgKiesanowski
20
56 kgLuebke
25
54 kgPeñuela
27
53 kgPrieto
28
54 kgBergen
29
64 kgGoldman
33
64 kgJackson
37
63 kgRoorda
38
70 kgSimmonds
39
55 kgHammes
49
54 kgPilote Fortin
54
55 kgMiller
65
52 kgSaarelainen
67
58 kg
Weight (KG) →
Result →
70
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | ABBOTT Mara | 52 |
4 | DUEHRING Jasmin | 54 |
5 | VILLUMSEN Linda | 59 |
6 | HALL Katie | 52 |
7 | POIDEVIN Sara | 56 |
8 | ARMSTRONG Kristin | 58 |
11 | YONAMINE Eri | 51 |
15 | STEPHENS Lauren | 55 |
17 | THOMAS Leah | 58 |
18 | LAWS Sharon | 54 |
20 | KIESANOWSKI Joanne | 56 |
25 | LUEBKE Jennifer | 54 |
27 | PEÑUELA Diana | 53 |
28 | PRIETO Marcela Elizabeth | 54 |
29 | BERGEN Sara | 64 |
33 | GOLDMAN Lindsay | 64 |
37 | JACKSON Alison | 63 |
38 | ROORDA Stephanie | 70 |
39 | SIMMONDS Hayley | 55 |
49 | HAMMES Kathrin | 54 |
54 | PILOTE FORTIN Gabrielle | 55 |
65 | MILLER Amanda | 52 |
67 | SAARELAINEN Sari | 58 |