Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Duehring
1
54 kgThomas
2
58 kgVillumsen
7
59 kgStephens
11
55 kgYonamine
13
51 kgPoidevin
14
56 kgKiesanowski
15
56 kgHall
16
52 kgBergen
17
64 kgArmstrong
20
58 kgLaws
21
54 kgAbbott
22
52 kgLuebke
23
54 kgPeñuela
27
53 kgGoldman
29
64 kgPrieto
34
54 kgJackson
37
63 kgPilote Fortin
38
55 kgRoorda
40
70 kgSaarelainen
43
58 kgSimmonds
46
55 kgHammes
53
54 kgMiller
65
52 kg
1
54 kgThomas
2
58 kgVillumsen
7
59 kgStephens
11
55 kgYonamine
13
51 kgPoidevin
14
56 kgKiesanowski
15
56 kgHall
16
52 kgBergen
17
64 kgArmstrong
20
58 kgLaws
21
54 kgAbbott
22
52 kgLuebke
23
54 kgPeñuela
27
53 kgGoldman
29
64 kgPrieto
34
54 kgJackson
37
63 kgPilote Fortin
38
55 kgRoorda
40
70 kgSaarelainen
43
58 kgSimmonds
46
55 kgHammes
53
54 kgMiller
65
52 kg
Weight (KG) →
Result →
70
51
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | DUEHRING Jasmin | 54 |
2 | THOMAS Leah | 58 |
7 | VILLUMSEN Linda | 59 |
11 | STEPHENS Lauren | 55 |
13 | YONAMINE Eri | 51 |
14 | POIDEVIN Sara | 56 |
15 | KIESANOWSKI Joanne | 56 |
16 | HALL Katie | 52 |
17 | BERGEN Sara | 64 |
20 | ARMSTRONG Kristin | 58 |
21 | LAWS Sharon | 54 |
22 | ABBOTT Mara | 52 |
23 | LUEBKE Jennifer | 54 |
27 | PEÑUELA Diana | 53 |
29 | GOLDMAN Lindsay | 64 |
34 | PRIETO Marcela Elizabeth | 54 |
37 | JACKSON Alison | 63 |
38 | PILOTE FORTIN Gabrielle | 55 |
40 | ROORDA Stephanie | 70 |
43 | SAARELAINEN Sari | 58 |
46 | SIMMONDS Hayley | 55 |
53 | HAMMES Kathrin | 54 |
65 | MILLER Amanda | 52 |