Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Armstrong
1
58 kgAbbott
2
52 kgStephens
3
55 kgVillumsen
4
59 kgDuehring
5
54 kgThomas
7
58 kgHall
8
52 kgYonamine
9
51 kgSimmonds
15
55 kgPoidevin
20
56 kgLuebke
24
54 kgHammes
25
54 kgBergen
32
64 kgKiesanowski
33
56 kgMiller
37
52 kgGoldman
43
64 kgPeñuela
45
53 kgRoorda
46
70 kgLaws
56
54 kgPrieto
63
54 kgPilote Fortin
64
55 kgJackson
66
63 kgSaarelainen
67
58 kg
1
58 kgAbbott
2
52 kgStephens
3
55 kgVillumsen
4
59 kgDuehring
5
54 kgThomas
7
58 kgHall
8
52 kgYonamine
9
51 kgSimmonds
15
55 kgPoidevin
20
56 kgLuebke
24
54 kgHammes
25
54 kgBergen
32
64 kgKiesanowski
33
56 kgMiller
37
52 kgGoldman
43
64 kgPeñuela
45
53 kgRoorda
46
70 kgLaws
56
54 kgPrieto
63
54 kgPilote Fortin
64
55 kgJackson
66
63 kgSaarelainen
67
58 kg
Weight (KG) →
Result →
70
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | ARMSTRONG Kristin | 58 |
2 | ABBOTT Mara | 52 |
3 | STEPHENS Lauren | 55 |
4 | VILLUMSEN Linda | 59 |
5 | DUEHRING Jasmin | 54 |
7 | THOMAS Leah | 58 |
8 | HALL Katie | 52 |
9 | YONAMINE Eri | 51 |
15 | SIMMONDS Hayley | 55 |
20 | POIDEVIN Sara | 56 |
24 | LUEBKE Jennifer | 54 |
25 | HAMMES Kathrin | 54 |
32 | BERGEN Sara | 64 |
33 | KIESANOWSKI Joanne | 56 |
37 | MILLER Amanda | 52 |
43 | GOLDMAN Lindsay | 64 |
45 | PEÑUELA Diana | 53 |
46 | ROORDA Stephanie | 70 |
56 | LAWS Sharon | 54 |
63 | PRIETO Marcela Elizabeth | 54 |
64 | PILOTE FORTIN Gabrielle | 55 |
66 | JACKSON Alison | 63 |
67 | SAARELAINEN Sari | 58 |