Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Abbott
1
52 kgArmstrong
2
58 kgDuehring
4
54 kgVillumsen
5
59 kgStephens
6
55 kgHall
7
52 kgYonamine
10
51 kgThomas
11
58 kgPoidevin
12
56 kgKiesanowski
18
56 kgBergen
25
64 kgLaws
27
54 kgPeñuela
28
53 kgGoldman
32
64 kgLuebke
33
54 kgPrieto
34
54 kgSimmonds
35
55 kgRoorda
37
70 kgJackson
43
63 kgHammes
44
54 kgPilote Fortin
53
55 kgMiller
62
52 kgSaarelainen
65
58 kg
1
52 kgArmstrong
2
58 kgDuehring
4
54 kgVillumsen
5
59 kgStephens
6
55 kgHall
7
52 kgYonamine
10
51 kgThomas
11
58 kgPoidevin
12
56 kgKiesanowski
18
56 kgBergen
25
64 kgLaws
27
54 kgPeñuela
28
53 kgGoldman
32
64 kgLuebke
33
54 kgPrieto
34
54 kgSimmonds
35
55 kgRoorda
37
70 kgJackson
43
63 kgHammes
44
54 kgPilote Fortin
53
55 kgMiller
62
52 kgSaarelainen
65
58 kg
Weight (KG) →
Result →
70
51
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | ABBOTT Mara | 52 |
2 | ARMSTRONG Kristin | 58 |
4 | DUEHRING Jasmin | 54 |
5 | VILLUMSEN Linda | 59 |
6 | STEPHENS Lauren | 55 |
7 | HALL Katie | 52 |
10 | YONAMINE Eri | 51 |
11 | THOMAS Leah | 58 |
12 | POIDEVIN Sara | 56 |
18 | KIESANOWSKI Joanne | 56 |
25 | BERGEN Sara | 64 |
27 | LAWS Sharon | 54 |
28 | PEÑUELA Diana | 53 |
32 | GOLDMAN Lindsay | 64 |
33 | LUEBKE Jennifer | 54 |
34 | PRIETO Marcela Elizabeth | 54 |
35 | SIMMONDS Hayley | 55 |
37 | ROORDA Stephanie | 70 |
43 | JACKSON Alison | 63 |
44 | HAMMES Kathrin | 54 |
53 | PILOTE FORTIN Gabrielle | 55 |
62 | MILLER Amanda | 52 |
65 | SAARELAINEN Sari | 58 |