Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Abbott
1
52 kgDuehring
4
54 kgPoidevin
5
56 kgHall
6
52 kgYonamine
8
51 kgArmstrong
9
58 kgThomas
10
58 kgVillumsen
11
59 kgStephens
14
55 kgLaws
17
54 kgPrieto
21
54 kgKiesanowski
24
56 kgBergen
28
64 kgLuebke
29
54 kgHammes
31
54 kgSimmonds
36
55 kgRoorda
37
70 kgPilote Fortin
42
55 kgPeñuela
47
53 kgSaarelainen
52
58 kg
1
52 kgDuehring
4
54 kgPoidevin
5
56 kgHall
6
52 kgYonamine
8
51 kgArmstrong
9
58 kgThomas
10
58 kgVillumsen
11
59 kgStephens
14
55 kgLaws
17
54 kgPrieto
21
54 kgKiesanowski
24
56 kgBergen
28
64 kgLuebke
29
54 kgHammes
31
54 kgSimmonds
36
55 kgRoorda
37
70 kgPilote Fortin
42
55 kgPeñuela
47
53 kgSaarelainen
52
58 kg
Weight (KG) →
Result →
70
51
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | ABBOTT Mara | 52 |
4 | DUEHRING Jasmin | 54 |
5 | POIDEVIN Sara | 56 |
6 | HALL Katie | 52 |
8 | YONAMINE Eri | 51 |
9 | ARMSTRONG Kristin | 58 |
10 | THOMAS Leah | 58 |
11 | VILLUMSEN Linda | 59 |
14 | STEPHENS Lauren | 55 |
17 | LAWS Sharon | 54 |
21 | PRIETO Marcela Elizabeth | 54 |
24 | KIESANOWSKI Joanne | 56 |
28 | BERGEN Sara | 64 |
29 | LUEBKE Jennifer | 54 |
31 | HAMMES Kathrin | 54 |
36 | SIMMONDS Hayley | 55 |
37 | ROORDA Stephanie | 70 |
42 | PILOTE FORTIN Gabrielle | 55 |
47 | PEÑUELA Diana | 53 |
52 | SAARELAINEN Sari | 58 |