Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Dygert
1
66 kgPeñuela
3
53 kgHall
5
52 kgThomas
6
58 kgWilliams
7
66 kgPoidevin
8
56 kgPrieto
9
54 kgDuehring
10
54 kgPitel
11
52 kgPowless
14
59 kgClevenger
17
57 kgParra
20
58 kgRamirez
21
54 kgFranz
29
52 kgBanks
31
62 kgLuebke
33
54 kgScandolara
37
52 kgTeddergreen
41
51 kg
1
66 kgPeñuela
3
53 kgHall
5
52 kgThomas
6
58 kgWilliams
7
66 kgPoidevin
8
56 kgPrieto
9
54 kgDuehring
10
54 kgPitel
11
52 kgPowless
14
59 kgClevenger
17
57 kgParra
20
58 kgRamirez
21
54 kgFranz
29
52 kgBanks
31
62 kgLuebke
33
54 kgScandolara
37
52 kgTeddergreen
41
51 kg
Weight (KG) →
Result →
66
51
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | DYGERT Chloé | 66 |
3 | PEÑUELA Diana | 53 |
5 | HALL Katie | 52 |
6 | THOMAS Leah | 58 |
7 | WILLIAMS Lily | 66 |
8 | POIDEVIN Sara | 56 |
9 | PRIETO Marcela Elizabeth | 54 |
10 | DUEHRING Jasmin | 54 |
11 | PITEL Edwige | 52 |
14 | POWLESS Shayna | 59 |
17 | CLEVENGER Erica | 57 |
20 | PARRA Jessica Marcela | 58 |
21 | RAMIREZ Andrea | 54 |
29 | FRANZ Heidi | 52 |
31 | BANKS Elizabeth | 62 |
33 | LUEBKE Jennifer | 54 |
37 | SCANDOLARA Valentina | 52 |
41 | TEDDERGREEN Starla | 51 |