Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hall
1
52 kgPoidevin
2
56 kgThomas
3
58 kgPitel
4
52 kgDygert
5
66 kgPrieto
6
54 kgDuehring
7
54 kgPeñuela
8
53 kgLuebke
10
54 kgFranz
15
52 kgRamirez
16
54 kgPowless
17
59 kgBanks
20
62 kgWilliams
22
66 kgParra
28
58 kgWirski
36
57 kgScandolara
40
52 kgTeddergreen
41
51 kg
1
52 kgPoidevin
2
56 kgThomas
3
58 kgPitel
4
52 kgDygert
5
66 kgPrieto
6
54 kgDuehring
7
54 kgPeñuela
8
53 kgLuebke
10
54 kgFranz
15
52 kgRamirez
16
54 kgPowless
17
59 kgBanks
20
62 kgWilliams
22
66 kgParra
28
58 kgWirski
36
57 kgScandolara
40
52 kgTeddergreen
41
51 kg
Weight (KG) →
Result →
66
51
1
41
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | HALL Katie | 52 |
| 2 | POIDEVIN Sara | 56 |
| 3 | THOMAS Leah | 58 |
| 4 | PITEL Edwige | 52 |
| 5 | DYGERT Chloé | 66 |
| 6 | PRIETO Marcela Elizabeth | 54 |
| 7 | DUEHRING Jasmin | 54 |
| 8 | PEÑUELA Diana | 53 |
| 10 | LUEBKE Jennifer | 54 |
| 15 | FRANZ Heidi | 52 |
| 16 | RAMIREZ Andrea | 54 |
| 17 | POWLESS Shayna | 59 |
| 20 | BANKS Elizabeth | 62 |
| 22 | WILLIAMS Lily | 66 |
| 28 | PARRA Jessica Marcela | 58 |
| 36 | WIRSKI Erica | 57 |
| 40 | SCANDOLARA Valentina | 52 |
| 41 | TEDDERGREEN Starla | 51 |