Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 64
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Mancebo
1
64 kgDombrowski
3
68 kgHowes
4
61 kgBennett
5
58 kgDay
7
68 kgMorton
8
62 kgChadwick
12
75 kgGaimon
16
67 kgParker
20
65 kgZirbel
23
91 kgHaga
30
71.5 kgHuffman
35
71 kgWohlberg
43
63 kgRathe
55
74 kgThomson
57
75 kgFreiberg
63
82 kgKemps
86
73 kgGudsell
88
77 kgCarlsen
100
68 kgNorthey
103
69 kgSummerhill
104
70 kgJones
106
64 kgBorrajo
114
76 kgVink
132
73 kg
1
64 kgDombrowski
3
68 kgHowes
4
61 kgBennett
5
58 kgDay
7
68 kgMorton
8
62 kgChadwick
12
75 kgGaimon
16
67 kgParker
20
65 kgZirbel
23
91 kgHaga
30
71.5 kgHuffman
35
71 kgWohlberg
43
63 kgRathe
55
74 kgThomson
57
75 kgFreiberg
63
82 kgKemps
86
73 kgGudsell
88
77 kgCarlsen
100
68 kgNorthey
103
69 kgSummerhill
104
70 kgJones
106
64 kgBorrajo
114
76 kgVink
132
73 kg
Weight (KG) →
Result →
91
58
1
132
# | Rider | Weight (KG) |
---|---|---|
1 | MANCEBO Francisco | 64 |
3 | DOMBROWSKI Joe | 68 |
4 | HOWES Alex | 61 |
5 | BENNETT George | 58 |
7 | DAY Benjamin | 68 |
8 | MORTON Lachlan | 62 |
12 | CHADWICK Glen Alan | 75 |
16 | GAIMON Phillip | 67 |
20 | PARKER Dale | 65 |
23 | ZIRBEL Tom | 91 |
30 | HAGA Chad | 71.5 |
35 | HUFFMAN Evan | 71 |
43 | WOHLBERG Eric | 63 |
55 | RATHE Jacob | 74 |
57 | THOMSON Jay Robert | 75 |
63 | FREIBERG Michael | 82 |
86 | KEMPS Aaron | 73 |
88 | GUDSELL Timothy | 77 |
100 | CARLSEN Kirk | 68 |
103 | NORTHEY Michael James | 69 |
104 | SUMMERHILL Daniel | 70 |
106 | JONES Carter | 64 |
114 | BORRAJO Alejandro Alberto | 76 |
132 | VINK Michael | 73 |