Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Borrajo
2
76 kgKemps
3
73 kgSummerhill
4
70 kgMancebo
6
64 kgNorthey
7
69 kgThomson
8
75 kgHowes
13
61 kgZirbel
17
91 kgBennett
18
58 kgDay
20
68 kgRathe
21
74 kgParker
24
65 kgWalker
25
63 kgMorton
32
62 kgChadwick
38
75 kgWohlberg
53
63 kgDombrowski
60
68 kgHaga
66
71.5 kgGudsell
68
77 kgCarlsen
80
68 kgHuffman
83
71 kgGaimon
86
67 kgFreiberg
88
82 kgJones
127
64 kg
2
76 kgKemps
3
73 kgSummerhill
4
70 kgMancebo
6
64 kgNorthey
7
69 kgThomson
8
75 kgHowes
13
61 kgZirbel
17
91 kgBennett
18
58 kgDay
20
68 kgRathe
21
74 kgParker
24
65 kgWalker
25
63 kgMorton
32
62 kgChadwick
38
75 kgWohlberg
53
63 kgDombrowski
60
68 kgHaga
66
71.5 kgGudsell
68
77 kgCarlsen
80
68 kgHuffman
83
71 kgGaimon
86
67 kgFreiberg
88
82 kgJones
127
64 kg
Weight (KG) →
Result →
91
58
2
127
# | Rider | Weight (KG) |
---|---|---|
2 | BORRAJO Alejandro Alberto | 76 |
3 | KEMPS Aaron | 73 |
4 | SUMMERHILL Daniel | 70 |
6 | MANCEBO Francisco | 64 |
7 | NORTHEY Michael James | 69 |
8 | THOMSON Jay Robert | 75 |
13 | HOWES Alex | 61 |
17 | ZIRBEL Tom | 91 |
18 | BENNETT George | 58 |
20 | DAY Benjamin | 68 |
21 | RATHE Jacob | 74 |
24 | PARKER Dale | 65 |
25 | WALKER Johnnie | 63 |
32 | MORTON Lachlan | 62 |
38 | CHADWICK Glen Alan | 75 |
53 | WOHLBERG Eric | 63 |
60 | DOMBROWSKI Joe | 68 |
66 | HAGA Chad | 71.5 |
68 | GUDSELL Timothy | 77 |
80 | CARLSEN Kirk | 68 |
83 | HUFFMAN Evan | 71 |
86 | GAIMON Phillip | 67 |
88 | FREIBERG Michael | 82 |
127 | JONES Carter | 64 |