Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Mancebo
1
64 kgMorton
2
62 kgDombrowski
3
68 kgParker
4
65 kgHowes
5
61 kgChadwick
8
75 kgBennett
11
58 kgDay
13
68 kgHaga
19
71.5 kgHuffman
20
71 kgZirbel
23
91 kgFreiberg
25
82 kgNorthey
30
69 kgGaimon
40
67 kgSummerhill
46
70 kgThomson
53
75 kgWalker
60
63 kgGudsell
62
77 kgWohlberg
72
63 kgRathe
75
74 kg
1
64 kgMorton
2
62 kgDombrowski
3
68 kgParker
4
65 kgHowes
5
61 kgChadwick
8
75 kgBennett
11
58 kgDay
13
68 kgHaga
19
71.5 kgHuffman
20
71 kgZirbel
23
91 kgFreiberg
25
82 kgNorthey
30
69 kgGaimon
40
67 kgSummerhill
46
70 kgThomson
53
75 kgWalker
60
63 kgGudsell
62
77 kgWohlberg
72
63 kgRathe
75
74 kg
Weight (KG) →
Result →
91
58
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | MANCEBO Francisco | 64 |
2 | MORTON Lachlan | 62 |
3 | DOMBROWSKI Joe | 68 |
4 | PARKER Dale | 65 |
5 | HOWES Alex | 61 |
8 | CHADWICK Glen Alan | 75 |
11 | BENNETT George | 58 |
13 | DAY Benjamin | 68 |
19 | HAGA Chad | 71.5 |
20 | HUFFMAN Evan | 71 |
23 | ZIRBEL Tom | 91 |
25 | FREIBERG Michael | 82 |
30 | NORTHEY Michael James | 69 |
40 | GAIMON Phillip | 67 |
46 | SUMMERHILL Daniel | 70 |
53 | THOMSON Jay Robert | 75 |
60 | WALKER Johnnie | 63 |
62 | GUDSELL Timothy | 77 |
72 | WOHLBERG Eric | 63 |
75 | RATHE Jacob | 74 |