Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Jaramillo
1
63 kgMannion
2
58 kgGeoghegan Hart
4
65 kgOram
6
68 kgMurphy
7
67 kgBolivar
9
64 kgMorton
10
62 kgLemus
11
61 kgDaniel
12
64 kgKuss
13
61 kgDal-Cin
16
77 kgGuerreiro
18
65 kgKerby
19
71 kgOwen
22
67 kgRathe
30
74 kgPiccoli
31
65 kgFlautt
35
68 kgCorella
37
75 kg
1
63 kgMannion
2
58 kgGeoghegan Hart
4
65 kgOram
6
68 kgMurphy
7
67 kgBolivar
9
64 kgMorton
10
62 kgLemus
11
61 kgDaniel
12
64 kgKuss
13
61 kgDal-Cin
16
77 kgGuerreiro
18
65 kgKerby
19
71 kgOwen
22
67 kgRathe
30
74 kgPiccoli
31
65 kgFlautt
35
68 kgCorella
37
75 kg
Weight (KG) →
Result →
77
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | JARAMILLO Daniel | 63 |
2 | MANNION Gavin | 58 |
4 | GEOGHEGAN HART Tao | 65 |
6 | ORAM James | 68 |
7 | MURPHY Kyle | 67 |
9 | BOLIVAR Isaac | 64 |
10 | MORTON Lachlan | 62 |
11 | LEMUS Luis | 61 |
12 | DANIEL Gregory | 64 |
13 | KUSS Sepp | 61 |
16 | DAL-CIN Matteo | 77 |
18 | GUERREIRO Ruben | 65 |
19 | KERBY Jordan | 71 |
22 | OWEN Logan | 67 |
30 | RATHE Jacob | 74 |
31 | PICCOLI James | 65 |
35 | FLAUTT Oliver | 68 |
37 | CORELLA Rene | 75 |