Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 49
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Hoehn
1
63 kgSevilla
2
62 kgRøed
3
74 kgDeuel
4
70 kgHaug
6
67 kgArnopol
8
61 kgParra
9
51 kgMcDunphy
12
70 kgBickmore
19
74 kgVargas
20
69 kgPrado
22
65 kgWardrop
24
62 kgMiles
26
64 kgLange
32
72 kgVerhoeff
35
76 kgKelley
40
68 kgStrohmeyer
49
55 kgFlanagan
56
67 kgStravers
58
73 kgWijfje
63
66 kgBoyle
65
77 kgMcquerry
70
78 kg
1
63 kgSevilla
2
62 kgRøed
3
74 kgDeuel
4
70 kgHaug
6
67 kgArnopol
8
61 kgParra
9
51 kgMcDunphy
12
70 kgBickmore
19
74 kgVargas
20
69 kgPrado
22
65 kgWardrop
24
62 kgMiles
26
64 kgLange
32
72 kgVerhoeff
35
76 kgKelley
40
68 kgStrohmeyer
49
55 kgFlanagan
56
67 kgStravers
58
73 kgWijfje
63
66 kgBoyle
65
77 kgMcquerry
70
78 kg
Weight (KG) →
Result →
78
51
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | HOEHN Alex | 63 |
2 | SEVILLA Óscar | 62 |
3 | RØED Torbjørn Andre | 74 |
4 | DEUEL Drake | 70 |
6 | HAUG Kieran | 67 |
8 | ARNOPOL Richard | 61 |
9 | PARRA Heiner Rodrigo | 51 |
12 | MCDUNPHY Conn | 70 |
19 | BICKMORE Cade | 74 |
20 | VARGAS Walter | 69 |
22 | PRADO Ignacio de Jesús | 65 |
24 | WARDROP Aden | 62 |
26 | MILES Carson | 64 |
32 | LANGE Colby | 72 |
35 | VERHOEFF Stefan | 76 |
40 | KELLEY Garin | 68 |
49 | STROHMEYER Andrew | 55 |
56 | FLANAGAN Liam | 67 |
58 | STRAVERS Jarri | 73 |
63 | WIJFJE Tom | 66 |
65 | BOYLE Evan | 77 |
70 | MCQUERRY Justin | 78 |