Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 45
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Sevilla
1
62 kgHoehn
2
63 kgHaug
5
67 kgDeuel
6
70 kgRøed
7
74 kgParra
8
51 kgArnopol
9
61 kgMcDunphy
11
70 kgBickmore
16
74 kgWardrop
23
62 kgPrado
25
65 kgVargas
29
69 kgMiles
31
64 kgLange
34
72 kgVerhoeff
35
76 kgFlanagan
44
67 kgKelley
45
68 kgStravers
54
73 kgWijfje
56
66 kgStrohmeyer
60
55 kgMcquerry
71
78 kgBoyle
72
77 kg
1
62 kgHoehn
2
63 kgHaug
5
67 kgDeuel
6
70 kgRøed
7
74 kgParra
8
51 kgArnopol
9
61 kgMcDunphy
11
70 kgBickmore
16
74 kgWardrop
23
62 kgPrado
25
65 kgVargas
29
69 kgMiles
31
64 kgLange
34
72 kgVerhoeff
35
76 kgFlanagan
44
67 kgKelley
45
68 kgStravers
54
73 kgWijfje
56
66 kgStrohmeyer
60
55 kgMcquerry
71
78 kgBoyle
72
77 kg
Weight (KG) →
Result →
78
51
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
2 | HOEHN Alex | 63 |
5 | HAUG Kieran | 67 |
6 | DEUEL Drake | 70 |
7 | RØED Torbjørn Andre | 74 |
8 | PARRA Heiner Rodrigo | 51 |
9 | ARNOPOL Richard | 61 |
11 | MCDUNPHY Conn | 70 |
16 | BICKMORE Cade | 74 |
23 | WARDROP Aden | 62 |
25 | PRADO Ignacio de Jesús | 65 |
29 | VARGAS Walter | 69 |
31 | MILES Carson | 64 |
34 | LANGE Colby | 72 |
35 | VERHOEFF Stefan | 76 |
44 | FLANAGAN Liam | 67 |
45 | KELLEY Garin | 68 |
54 | STRAVERS Jarri | 73 |
56 | WIJFJE Tom | 66 |
60 | STROHMEYER Andrew | 55 |
71 | MCQUERRY Justin | 78 |
72 | BOYLE Evan | 77 |