Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Laverde
1
63 kgEfimkin
2
70 kgBagot
3
65 kgPinot
4
63 kgPeterson
5
70 kgVichot
6
74 kgČanecký
7
72 kgChiarini
8
70 kgBodrogi
9
79 kgWurf
11
71 kgNoè
12
65 kgZeits
13
73 kgMcCarty
14
68 kgBazayev
15
62 kgNavardauskas
16
79 kgKasa
17
72 kgVan Goolen
19
70 kgRoldán
20
61 kgVerbist
21
73 kgGarcía
22
70 kgPérez
23
70 kgSeubert
24
73 kg
1
63 kgEfimkin
2
70 kgBagot
3
65 kgPinot
4
63 kgPeterson
5
70 kgVichot
6
74 kgČanecký
7
72 kgChiarini
8
70 kgBodrogi
9
79 kgWurf
11
71 kgNoè
12
65 kgZeits
13
73 kgMcCarty
14
68 kgBazayev
15
62 kgNavardauskas
16
79 kgKasa
17
72 kgVan Goolen
19
70 kgRoldán
20
61 kgVerbist
21
73 kgGarcía
22
70 kgPérez
23
70 kgSeubert
24
73 kg
Weight (KG) →
Result →
79
61
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | LAVERDE Luis Felipe | 63 |
2 | EFIMKIN Alexander | 70 |
3 | BAGOT Yoann | 65 |
4 | PINOT Thibaut | 63 |
5 | PETERSON Tom | 70 |
6 | VICHOT Arthur | 74 |
7 | ČANECKÝ Marek | 72 |
8 | CHIARINI Riccardo | 70 |
9 | BODROGI László | 79 |
11 | WURF Cameron | 71 |
12 | NOÈ Andrea | 65 |
13 | ZEITS Andrey | 73 |
14 | MCCARTY Jonathan Patrick | 68 |
15 | BAZAYEV Assan | 62 |
16 | NAVARDAUSKAS Ramūnas | 79 |
17 | KASA Gabor | 72 |
19 | VAN GOOLEN Jurgen | 70 |
20 | ROLDÁN Jose Luis | 61 |
21 | VERBIST Evert | 73 |
22 | GARCÍA Egoitz | 70 |
23 | PÉREZ Aitor | 70 |
24 | SEUBERT Timon | 73 |