Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Sayar
2
64 kgFinetto
3
62 kgThurau
4
73 kgBagot
6
65 kgBerhane
7
66 kgMarycz
8
69 kgSeeldraeyers
9
60 kgPauwels
10
65 kgDe Negri
11
61 kgAndriato
12
67 kgEdet
13
60 kgMéderel
14
59 kgPetrov
15
63 kgChalapud
16
63 kgDelaplace
17
65 kgModolo
18
67 kgAtapuma
19
59 kgde la Fuente
20
67 kgFerrari
21
64 kgIgnatiev
23
67 kgDuggan
24
60 kg
2
64 kgFinetto
3
62 kgThurau
4
73 kgBagot
6
65 kgBerhane
7
66 kgMarycz
8
69 kgSeeldraeyers
9
60 kgPauwels
10
65 kgDe Negri
11
61 kgAndriato
12
67 kgEdet
13
60 kgMéderel
14
59 kgPetrov
15
63 kgChalapud
16
63 kgDelaplace
17
65 kgModolo
18
67 kgAtapuma
19
59 kgde la Fuente
20
67 kgFerrari
21
64 kgIgnatiev
23
67 kgDuggan
24
60 kg
Weight (KG) →
Result →
73
59
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | SAYAR Mustafa | 64 |
3 | FINETTO Mauro | 62 |
4 | THURAU Björn | 73 |
6 | BAGOT Yoann | 65 |
7 | BERHANE Natnael | 66 |
8 | MARYCZ Jarosław | 69 |
9 | SEELDRAEYERS Kevin | 60 |
10 | PAUWELS Serge | 65 |
11 | DE NEGRI Pier Paolo | 61 |
12 | ANDRIATO Rafael | 67 |
13 | EDET Nicolas | 60 |
14 | MÉDEREL Maxime | 59 |
15 | PETROV Danail Andonov | 63 |
16 | CHALAPUD Robinson | 63 |
17 | DELAPLACE Anthony | 65 |
18 | MODOLO Sacha | 67 |
19 | ATAPUMA Darwin | 59 |
20 | DE LA FUENTE David | 67 |
21 | FERRARI Fabricio | 64 |
23 | IGNATIEV Mikhail | 67 |
24 | DUGGAN Timothy | 60 |