Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Buts
1
68 kgCelano
2
65 kgMaestri
3
73 kgVine
4
69 kgDíaz
5
64 kgVenchiarutti
6
64 kgGavazzi
7
65 kgGarcía
8
55 kgTonelli
9
64 kgKudus
10
58 kgIrizar
11
67 kgSepúlveda
12
59 kgBrändle
13
80 kgZoccarato
14
74 kgSlik
16
71 kgSuter
18
75 kgWeulink
19
62 kgMcGeough
20
76 kgRomo
21
70 kgBazhkou
23
65 kgDe Bie
24
65 kgFernández
26
69 kgEtxeberria
29
65 kg
1
68 kgCelano
2
65 kgMaestri
3
73 kgVine
4
69 kgDíaz
5
64 kgVenchiarutti
6
64 kgGavazzi
7
65 kgGarcía
8
55 kgTonelli
9
64 kgKudus
10
58 kgIrizar
11
67 kgSepúlveda
12
59 kgBrändle
13
80 kgZoccarato
14
74 kgSlik
16
71 kgSuter
18
75 kgWeulink
19
62 kgMcGeough
20
76 kgRomo
21
70 kgBazhkou
23
65 kgDe Bie
24
65 kgFernández
26
69 kgEtxeberria
29
65 kg
Weight (KG) →
Result →
80
55
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | BUTS Vitaliy | 68 |
2 | CELANO Danilo | 65 |
3 | MAESTRI Mirco | 73 |
4 | VINE Jay | 69 |
5 | DÍAZ José Manuel | 64 |
6 | VENCHIARUTTI Nicola | 64 |
7 | GAVAZZI Francesco | 65 |
8 | GARCÍA Jhojan | 55 |
9 | TONELLI Alessandro | 64 |
10 | KUDUS Merhawi | 58 |
11 | IRIZAR Julen | 67 |
12 | SEPÚLVEDA Eduardo | 59 |
13 | BRÄNDLE Matthias | 80 |
14 | ZOCCARATO Samuele | 74 |
16 | SLIK Ivar | 71 |
18 | SUTER Joel | 75 |
19 | WEULINK Meindert | 62 |
20 | MCGEOUGH Cormac | 76 |
21 | ROMO Javier | 70 |
23 | BAZHKOU Stanislau | 65 |
24 | DE BIE Sean | 65 |
26 | FERNÁNDEZ Delio | 69 |
29 | ETXEBERRIA Josu | 65 |