Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Jakobsen
1
78 kgWeemaes
2
73 kgDehairs
3
82 kgLonardi
4
70 kgBabor
6
79 kgPlowright
7
80 kgPersico
8
65 kgJanse van Rensburg
9
74 kgDupont
10
72 kgSainbayar
11
60 kgFinkšt
12
70 kgWelsford
13
79 kgBudziński
14
69 kgZanoncello
15
64 kgBallerini
16
71 kgCavendish
18
70 kg
1
78 kgWeemaes
2
73 kgDehairs
3
82 kgLonardi
4
70 kgBabor
6
79 kgPlowright
7
80 kgPersico
8
65 kgJanse van Rensburg
9
74 kgDupont
10
72 kgSainbayar
11
60 kgFinkšt
12
70 kgWelsford
13
79 kgBudziński
14
69 kgZanoncello
15
64 kgBallerini
16
71 kgCavendish
18
70 kg
Weight (KG) →
Result →
82
60
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | JAKOBSEN Fabio | 78 |
2 | WEEMAES Sasha | 73 |
3 | DEHAIRS Simon | 82 |
4 | LONARDI Giovanni | 70 |
6 | BABOR Daniel | 79 |
7 | PLOWRIGHT Jensen | 80 |
8 | PERSICO Davide | 65 |
9 | JANSE VAN RENSBURG Reinardt | 74 |
10 | DUPONT Timothy | 72 |
11 | SAINBAYAR Jambaljamts | 60 |
12 | FINKŠT Tilen | 70 |
13 | WELSFORD Sam | 79 |
14 | BUDZIŃSKI Tomasz | 69 |
15 | ZANONCELLO Enrico | 64 |
16 | BALLERINI Davide | 71 |
18 | CAVENDISH Mark | 70 |