Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Dorn
1
74 kgvan den Broek
2
70 kgBulut
3
64 kgMattheis
4
66 kgWhelan
5
64 kgPomorski
6
76 kgKudus
7
58 kgDouble
9
56 kgLoockx
10
70 kgConca
11
80 kgEyob
12
61 kgLópez
13
55 kgLangellotti
14
64 kgBerhane
15
66 kgBerlin
16
57 kgJohnston
17
55 kgLozano
18
63 kgRickaert
19
88 kgAparicio
20
69 kgTizza
22
58 kgMarchand
24
61 kgYamamoto
26
62 kgSamli
27
75 kg
1
74 kgvan den Broek
2
70 kgBulut
3
64 kgMattheis
4
66 kgWhelan
5
64 kgPomorski
6
76 kgKudus
7
58 kgDouble
9
56 kgLoockx
10
70 kgConca
11
80 kgEyob
12
61 kgLópez
13
55 kgLangellotti
14
64 kgBerhane
15
66 kgBerlin
16
57 kgJohnston
17
55 kgLozano
18
63 kgRickaert
19
88 kgAparicio
20
69 kgTizza
22
58 kgMarchand
24
61 kgYamamoto
26
62 kgSamli
27
75 kg
Weight (KG) →
Result →
88
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DORN Vinzent | 74 |
2 | VAN DEN BROEK Frank | 70 |
3 | BULUT Samet | 64 |
4 | MATTHEIS Oliver | 66 |
5 | WHELAN James | 64 |
6 | POMORSKI Michał | 76 |
7 | KUDUS Merhawi | 58 |
9 | DOUBLE Paul | 56 |
10 | LOOCKX Lander | 70 |
11 | CONCA Filippo | 80 |
12 | EYOB Metkel | 61 |
13 | LÓPEZ Harold Martín | 55 |
14 | LANGELLOTTI Victor | 64 |
15 | BERHANE Natnael | 66 |
16 | BERLIN Antoine | 57 |
17 | JOHNSTON Calum | 55 |
18 | LOZANO David | 63 |
19 | RICKAERT Jonas | 88 |
20 | APARICIO Mario | 69 |
22 | TIZZA Marco | 58 |
24 | MARCHAND Gianni | 61 |
26 | YAMAMOTO Genki | 62 |
27 | SAMLI Feritcan | 75 |