Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kocjan
1
72 kgSchär
2
78 kgHofland
3
71 kgReijnen
4
63 kgȚvetcov
5
69 kgPalini
6
67 kgVoigt
7
76 kgPutt
8
75 kgSkujiņš
10
70 kgEvans
12
64 kgWyss
13
65 kgZabel
14
81 kgWackermann
15
68 kgPhelan
16
73 kgKelderman
17
65 kgHowes
18
61 kgLapthorne
19
70 kgBookwalter
20
70 kgClarke
21
68 kg
1
72 kgSchär
2
78 kgHofland
3
71 kgReijnen
4
63 kgȚvetcov
5
69 kgPalini
6
67 kgVoigt
7
76 kgPutt
8
75 kgSkujiņš
10
70 kgEvans
12
64 kgWyss
13
65 kgZabel
14
81 kgWackermann
15
68 kgPhelan
16
73 kgKelderman
17
65 kgHowes
18
61 kgLapthorne
19
70 kgBookwalter
20
70 kgClarke
21
68 kg
Weight (KG) →
Result →
81
61
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | KOCJAN Jure | 72 |
2 | SCHÄR Michael | 78 |
3 | HOFLAND Moreno | 71 |
4 | REIJNEN Kiel | 63 |
5 | ȚVETCOV Serghei | 69 |
6 | PALINI Andrea | 67 |
7 | VOIGT Jens | 76 |
8 | PUTT Tanner | 75 |
10 | SKUJIŅŠ Toms | 70 |
12 | EVANS Cadel | 64 |
13 | WYSS Danilo | 65 |
14 | ZABEL Rick | 81 |
15 | WACKERMANN Luca | 68 |
16 | PHELAN Adam | 73 |
17 | KELDERMAN Wilco | 65 |
18 | HOWES Alex | 61 |
19 | LAPTHORNE Darren | 70 |
20 | BOOKWALTER Brent | 70 |
21 | CLARKE Jonathan | 68 |