Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hofland
1
71 kgKocjan
2
72 kgPalini
3
67 kgSchär
4
78 kgReijnen
6
63 kgȚvetcov
7
69 kgVoigt
9
76 kgKelderman
10
65 kgZabel
11
81 kgHanson
12
74 kgPutt
13
75 kgSkujiņš
14
70 kgSummerhill
15
70 kgWyss
16
65 kgEvans
17
64 kgRathe
19
74 kgPhelan
20
73 kgWackermann
21
68 kgMarangoni
22
74 kgHowes
23
61 kgLapthorne
24
70 kgMannion
25
58 kgBookwalter
26
70 kgClarke
27
68 kg
1
71 kgKocjan
2
72 kgPalini
3
67 kgSchär
4
78 kgReijnen
6
63 kgȚvetcov
7
69 kgVoigt
9
76 kgKelderman
10
65 kgZabel
11
81 kgHanson
12
74 kgPutt
13
75 kgSkujiņš
14
70 kgSummerhill
15
70 kgWyss
16
65 kgEvans
17
64 kgRathe
19
74 kgPhelan
20
73 kgWackermann
21
68 kgMarangoni
22
74 kgHowes
23
61 kgLapthorne
24
70 kgMannion
25
58 kgBookwalter
26
70 kgClarke
27
68 kg
Weight (KG) →
Result →
81
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
2 | KOCJAN Jure | 72 |
3 | PALINI Andrea | 67 |
4 | SCHÄR Michael | 78 |
6 | REIJNEN Kiel | 63 |
7 | ȚVETCOV Serghei | 69 |
9 | VOIGT Jens | 76 |
10 | KELDERMAN Wilco | 65 |
11 | ZABEL Rick | 81 |
12 | HANSON Ken | 74 |
13 | PUTT Tanner | 75 |
14 | SKUJIŅŠ Toms | 70 |
15 | SUMMERHILL Daniel | 70 |
16 | WYSS Danilo | 65 |
17 | EVANS Cadel | 64 |
19 | RATHE Jacob | 74 |
20 | PHELAN Adam | 73 |
21 | WACKERMANN Luca | 68 |
22 | MARANGONI Alan | 74 |
23 | HOWES Alex | 61 |
24 | LAPTHORNE Darren | 70 |
25 | MANNION Gavin | 58 |
26 | BOOKWALTER Brent | 70 |
27 | CLARKE Jonathan | 68 |