Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Hofland
1
71 kgKocjan
2
72 kgSchär
3
78 kgReijnen
5
63 kgVoigt
7
76 kgȚvetcov
8
69 kgKelderman
9
65 kgZabel
10
81 kgPutt
11
75 kgBasso
12
70 kgSkujiņš
13
70 kgTeuns
14
64 kgSummerhill
16
70 kgEvans
17
64 kgWyss
18
65 kgRathe
19
74 kgPhelan
21
73 kgWackermann
22
68 kgEijssen
23
60 kgHowes
25
61 kgMarangoni
26
74 kgBookwalter
27
70 kgMannion
28
58 kgDodi
29
65 kgClarke
30
68 kg
1
71 kgKocjan
2
72 kgSchär
3
78 kgReijnen
5
63 kgVoigt
7
76 kgȚvetcov
8
69 kgKelderman
9
65 kgZabel
10
81 kgPutt
11
75 kgBasso
12
70 kgSkujiņš
13
70 kgTeuns
14
64 kgSummerhill
16
70 kgEvans
17
64 kgWyss
18
65 kgRathe
19
74 kgPhelan
21
73 kgWackermann
22
68 kgEijssen
23
60 kgHowes
25
61 kgMarangoni
26
74 kgBookwalter
27
70 kgMannion
28
58 kgDodi
29
65 kgClarke
30
68 kg
Weight (KG) →
Result →
81
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
2 | KOCJAN Jure | 72 |
3 | SCHÄR Michael | 78 |
5 | REIJNEN Kiel | 63 |
7 | VOIGT Jens | 76 |
8 | ȚVETCOV Serghei | 69 |
9 | KELDERMAN Wilco | 65 |
10 | ZABEL Rick | 81 |
11 | PUTT Tanner | 75 |
12 | BASSO Ivan | 70 |
13 | SKUJIŅŠ Toms | 70 |
14 | TEUNS Dylan | 64 |
16 | SUMMERHILL Daniel | 70 |
17 | EVANS Cadel | 64 |
18 | WYSS Danilo | 65 |
19 | RATHE Jacob | 74 |
21 | PHELAN Adam | 73 |
22 | WACKERMANN Luca | 68 |
23 | EIJSSEN Yannick | 60 |
25 | HOWES Alex | 61 |
26 | MARANGONI Alan | 74 |
27 | BOOKWALTER Brent | 70 |
28 | MANNION Gavin | 58 |
29 | DODI Luca | 65 |
30 | CLARKE Jonathan | 68 |