Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Reijnen
1
63 kgKocjan
2
72 kgBookwalter
3
70 kgOwen
4
67 kgÁvila
6
61 kgHowes
7
61 kgSmith
8
67 kgVan Zyl
9
72 kgDaniel
10
64 kgThomson
11
75 kgPhinney
12
82 kgRosskopf
13
74 kgWippert
14
75 kgBerhane
17
66 kgColbrelli
18
74 kgNorris
20
67 kgMolano
22
72 kgOronte
23
65 kgPhelan
24
73 kgMannion
25
58 kgCanola
26
66 kgHaedo
29
64 kg
1
63 kgKocjan
2
72 kgBookwalter
3
70 kgOwen
4
67 kgÁvila
6
61 kgHowes
7
61 kgSmith
8
67 kgVan Zyl
9
72 kgDaniel
10
64 kgThomson
11
75 kgPhinney
12
82 kgRosskopf
13
74 kgWippert
14
75 kgBerhane
17
66 kgColbrelli
18
74 kgNorris
20
67 kgMolano
22
72 kgOronte
23
65 kgPhelan
24
73 kgMannion
25
58 kgCanola
26
66 kgHaedo
29
64 kg
Weight (KG) →
Result →
82
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | REIJNEN Kiel | 63 |
2 | KOCJAN Jure | 72 |
3 | BOOKWALTER Brent | 70 |
4 | OWEN Logan | 67 |
6 | ÁVILA Edwin | 61 |
7 | HOWES Alex | 61 |
8 | SMITH Dion | 67 |
9 | VAN ZYL Johann | 72 |
10 | DANIEL Gregory | 64 |
11 | THOMSON Jay Robert | 75 |
12 | PHINNEY Taylor | 82 |
13 | ROSSKOPF Joey | 74 |
14 | WIPPERT Wouter | 75 |
17 | BERHANE Natnael | 66 |
18 | COLBRELLI Sonny | 74 |
20 | NORRIS Lachlan | 67 |
22 | MOLANO Juan Sebastián | 72 |
23 | ORONTE Emerson | 65 |
24 | PHELAN Adam | 73 |
25 | MANNION Gavin | 58 |
26 | CANOLA Marco | 66 |
29 | HAEDO Lucas Sebastián | 64 |