Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
McCabe
3
72 kgMorton
5
62 kgPellaud
6
70 kgZabel
7
81 kgCosta
9
61 kgTalansky
10
63 kgReijnen
11
63 kgTanner
12
70 kgOwen
13
67 kgRosskopf
14
74 kgAtapuma
16
59 kgCastillo
17
72 kgCanola
19
66 kgLedanois
21
67 kgDal-Cin
22
77 kgClarke
25
68 kgHuffman
26
71 kgPerry
27
71 kgFilosi
28
70 kgMurphy
29
67 kgPutt
30
75 kg
3
72 kgMorton
5
62 kgPellaud
6
70 kgZabel
7
81 kgCosta
9
61 kgTalansky
10
63 kgReijnen
11
63 kgTanner
12
70 kgOwen
13
67 kgRosskopf
14
74 kgAtapuma
16
59 kgCastillo
17
72 kgCanola
19
66 kgLedanois
21
67 kgDal-Cin
22
77 kgClarke
25
68 kgHuffman
26
71 kgPerry
27
71 kgFilosi
28
70 kgMurphy
29
67 kgPutt
30
75 kg
Weight (KG) →
Result →
81
59
3
30
| # | Rider | Weight (KG) |
|---|---|---|
| 3 | MCCABE Travis | 72 |
| 5 | MORTON Lachlan | 62 |
| 6 | PELLAUD Simon | 70 |
| 7 | ZABEL Rick | 81 |
| 9 | COSTA Adrien | 61 |
| 10 | TALANSKY Andrew | 63 |
| 11 | REIJNEN Kiel | 63 |
| 12 | TANNER David | 70 |
| 13 | OWEN Logan | 67 |
| 14 | ROSSKOPF Joey | 74 |
| 16 | ATAPUMA Darwin | 59 |
| 17 | CASTILLO Ulises Alfredo | 72 |
| 19 | CANOLA Marco | 66 |
| 21 | LEDANOIS Kévin | 67 |
| 22 | DAL-CIN Matteo | 77 |
| 25 | CLARKE Jonathan | 68 |
| 26 | HUFFMAN Evan | 71 |
| 27 | PERRY Benjamin | 71 |
| 28 | FILOSI Iuri | 70 |
| 29 | MURPHY Kyle | 67 |
| 30 | PUTT Tanner | 75 |