Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Räim
1
69 kgMcCabe
2
72 kgLawless
3
72 kgMurphy
5
81 kgCanola
6
66 kgSimion
9
79 kgElmiger
11
73 kgCastillo
13
72 kgBoivin
14
78 kgWackermann
15
68 kgRosskopf
16
74 kgAndreetta
17
69 kgBenito
18
67 kgOliveira
19
66 kgTurek
20
72 kgCôté
21
74 kgCalabria
23
55 kgZamparella
24
67 kg
1
69 kgMcCabe
2
72 kgLawless
3
72 kgMurphy
5
81 kgCanola
6
66 kgSimion
9
79 kgElmiger
11
73 kgCastillo
13
72 kgBoivin
14
78 kgWackermann
15
68 kgRosskopf
16
74 kgAndreetta
17
69 kgBenito
18
67 kgOliveira
19
66 kgTurek
20
72 kgCôté
21
74 kgCalabria
23
55 kgZamparella
24
67 kg
Weight (KG) →
Result →
81
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | RÄIM Mihkel | 69 |
2 | MCCABE Travis | 72 |
3 | LAWLESS Chris | 72 |
5 | MURPHY John | 81 |
6 | CANOLA Marco | 66 |
9 | SIMION Paolo | 79 |
11 | ELMIGER Martin | 73 |
13 | CASTILLO Ulises Alfredo | 72 |
14 | BOIVIN Guillaume | 78 |
15 | WACKERMANN Luca | 68 |
16 | ROSSKOPF Joey | 74 |
17 | ANDREETTA Simone | 69 |
18 | BENITO Miguel Ángel | 67 |
19 | OLIVEIRA Rui | 66 |
20 | TUREK Daniel | 72 |
21 | CÔTÉ Pier-André | 74 |
23 | CALABRIA Fabio | 55 |
24 | ZAMPARELLA Marco | 67 |