Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 72
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
McCabe
1
72 kgCanola
2
66 kgRäim
3
69 kgMurphy
4
81 kgLawless
5
72 kgBoivin
9
78 kgOwen
10
67 kgSimion
11
79 kgBookwalter
14
70 kgRosskopf
15
74 kgElmiger
16
73 kgNorris
17
67 kgȚvetcov
19
69 kgCastillo
20
72 kgWackermann
22
68 kgAndreetta
23
69 kgOliveira
24
66 kgBenito
25
67 kgTurek
26
72 kgNarváez
27
65 kgCôté
29
74 kgZamparella
31
67 kgvan Winden
32
70 kg
1
72 kgCanola
2
66 kgRäim
3
69 kgMurphy
4
81 kgLawless
5
72 kgBoivin
9
78 kgOwen
10
67 kgSimion
11
79 kgBookwalter
14
70 kgRosskopf
15
74 kgElmiger
16
73 kgNorris
17
67 kgȚvetcov
19
69 kgCastillo
20
72 kgWackermann
22
68 kgAndreetta
23
69 kgOliveira
24
66 kgBenito
25
67 kgTurek
26
72 kgNarváez
27
65 kgCôté
29
74 kgZamparella
31
67 kgvan Winden
32
70 kg
Weight (KG) →
Result →
81
65
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | CANOLA Marco | 66 |
3 | RÄIM Mihkel | 69 |
4 | MURPHY John | 81 |
5 | LAWLESS Chris | 72 |
9 | BOIVIN Guillaume | 78 |
10 | OWEN Logan | 67 |
11 | SIMION Paolo | 79 |
14 | BOOKWALTER Brent | 70 |
15 | ROSSKOPF Joey | 74 |
16 | ELMIGER Martin | 73 |
17 | NORRIS Lachlan | 67 |
19 | ȚVETCOV Serghei | 69 |
20 | CASTILLO Ulises Alfredo | 72 |
22 | WACKERMANN Luca | 68 |
23 | ANDREETTA Simone | 69 |
24 | OLIVEIRA Rui | 66 |
25 | BENITO Miguel Ángel | 67 |
26 | TUREK Daniel | 72 |
27 | NARVÁEZ Jhonatan | 65 |
29 | CÔTÉ Pier-André | 74 |
31 | ZAMPARELLA Marco | 67 |
32 | VAN WINDEN Dennis | 70 |