Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
McCabe
1
72 kgCanola
2
66 kgRäim
3
69 kgMurphy
4
81 kgBoivin
7
78 kgOwen
8
67 kgSimion
9
79 kgBookwalter
11
70 kgElmiger
12
73 kgRosskopf
13
74 kgNorris
14
67 kgȚvetcov
16
69 kgCastillo
17
72 kgWackermann
19
68 kgBenito
20
67 kgOliveira
21
66 kgAndreetta
23
69 kgTurek
24
72 kgNarváez
25
65 kgCôté
27
74 kgZamparella
28
67 kgvan Winden
30
70 kg
1
72 kgCanola
2
66 kgRäim
3
69 kgMurphy
4
81 kgBoivin
7
78 kgOwen
8
67 kgSimion
9
79 kgBookwalter
11
70 kgElmiger
12
73 kgRosskopf
13
74 kgNorris
14
67 kgȚvetcov
16
69 kgCastillo
17
72 kgWackermann
19
68 kgBenito
20
67 kgOliveira
21
66 kgAndreetta
23
69 kgTurek
24
72 kgNarváez
25
65 kgCôté
27
74 kgZamparella
28
67 kgvan Winden
30
70 kg
Weight (KG) →
Result →
81
65
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | CANOLA Marco | 66 |
3 | RÄIM Mihkel | 69 |
4 | MURPHY John | 81 |
7 | BOIVIN Guillaume | 78 |
8 | OWEN Logan | 67 |
9 | SIMION Paolo | 79 |
11 | BOOKWALTER Brent | 70 |
12 | ELMIGER Martin | 73 |
13 | ROSSKOPF Joey | 74 |
14 | NORRIS Lachlan | 67 |
16 | ȚVETCOV Serghei | 69 |
17 | CASTILLO Ulises Alfredo | 72 |
19 | WACKERMANN Luca | 68 |
20 | BENITO Miguel Ángel | 67 |
21 | OLIVEIRA Rui | 66 |
23 | ANDREETTA Simone | 69 |
24 | TUREK Daniel | 72 |
25 | NARVÁEZ Jhonatan | 65 |
27 | CÔTÉ Pier-André | 74 |
28 | ZAMPARELLA Marco | 67 |
30 | VAN WINDEN Dennis | 70 |