Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
McCabe
1
72 kgKuss
2
61 kgPowless
3
67 kgMurphy
4
67 kgCastillo
5
72 kgBookwalter
6
70 kgÁvila
7
61 kgVillalobos
8
66 kgHermans
9
72 kgReijnen
10
63 kgWoods
12
62 kgCima
13
70 kgHaig
14
67 kgHuffman
15
71 kgPonzi
16
63 kgMcGeough
17
76 kgMannion
18
58 kgBouwman
19
60 kgSwirbul
20
65 kgOlivier
21
64 kgHernandez
23
74 kg
1
72 kgKuss
2
61 kgPowless
3
67 kgMurphy
4
67 kgCastillo
5
72 kgBookwalter
6
70 kgÁvila
7
61 kgVillalobos
8
66 kgHermans
9
72 kgReijnen
10
63 kgWoods
12
62 kgCima
13
70 kgHaig
14
67 kgHuffman
15
71 kgPonzi
16
63 kgMcGeough
17
76 kgMannion
18
58 kgBouwman
19
60 kgSwirbul
20
65 kgOlivier
21
64 kgHernandez
23
74 kg
Weight (KG) →
Result →
76
58
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | KUSS Sepp | 61 |
3 | POWLESS Neilson | 67 |
4 | MURPHY Kyle | 67 |
5 | CASTILLO Ulises Alfredo | 72 |
6 | BOOKWALTER Brent | 70 |
7 | ÁVILA Edwin | 61 |
8 | VILLALOBOS Luis | 66 |
9 | HERMANS Ben | 72 |
10 | REIJNEN Kiel | 63 |
12 | WOODS Michael | 62 |
13 | CIMA Damiano | 70 |
14 | HAIG Jack | 67 |
15 | HUFFMAN Evan | 71 |
16 | PONZI Simone | 63 |
17 | MCGEOUGH Cormac | 76 |
18 | MANNION Gavin | 58 |
19 | BOUWMAN Koen | 60 |
20 | SWIRBUL Keegan | 65 |
21 | OLIVIER Daan | 64 |
23 | HERNANDEZ Michael | 74 |