Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Mccormick
1
72.5 kgHermans
2
72 kgDombrowski
3
68 kgHowes
4
61 kgPiccoli
5
65 kgCanola
6
66 kgMurphy
8
67 kgAlmeida
9
63 kgEg
10
60 kgCraddock
11
69 kgFortunato
12
57 kgSwirbul
14
65 kgStetina
15
63 kgMorton
16
62 kgMannion
17
58 kgBadilatti
18
62 kgBongiorno
21
56 kgZardini
22
62 kgHuffman
23
71 kgVelasco
24
59 kgZimmer
26
68 kgSunderland
27
67 kgMcCabe
29
72 kgBowden
30
65 kg
1
72.5 kgHermans
2
72 kgDombrowski
3
68 kgHowes
4
61 kgPiccoli
5
65 kgCanola
6
66 kgMurphy
8
67 kgAlmeida
9
63 kgEg
10
60 kgCraddock
11
69 kgFortunato
12
57 kgSwirbul
14
65 kgStetina
15
63 kgMorton
16
62 kgMannion
17
58 kgBadilatti
18
62 kgBongiorno
21
56 kgZardini
22
62 kgHuffman
23
71 kgVelasco
24
59 kgZimmer
26
68 kgSunderland
27
67 kgMcCabe
29
72 kgBowden
30
65 kg
Weight (KG) →
Result →
72.5
56
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | MCCORMICK Hayden | 72.5 |
2 | HERMANS Ben | 72 |
3 | DOMBROWSKI Joe | 68 |
4 | HOWES Alex | 61 |
5 | PICCOLI James | 65 |
6 | CANOLA Marco | 66 |
8 | MURPHY Kyle | 67 |
9 | ALMEIDA João | 63 |
10 | EG Niklas | 60 |
11 | CRADDOCK Lawson | 69 |
12 | FORTUNATO Lorenzo | 57 |
14 | SWIRBUL Keegan | 65 |
15 | STETINA Peter | 63 |
16 | MORTON Lachlan | 62 |
17 | MANNION Gavin | 58 |
18 | BADILATTI Matteo | 62 |
21 | BONGIORNO Francesco Manuel | 56 |
22 | ZARDINI Edoardo | 62 |
23 | HUFFMAN Evan | 71 |
24 | VELASCO Simone | 59 |
26 | ZIMMER Matt | 68 |
27 | SUNDERLAND Dylan | 67 |
29 | MCCABE Travis | 72 |
30 | BOWDEN Scott | 65 |