Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
McCabe
1
72 kgCanola
2
66 kgHermans
3
72 kgCraddock
4
69 kgMarengo
5
69 kgMurphy
6
67 kgEg
7
60 kgÁvila
8
61 kgPiccoli
11
65 kgDombrowski
12
68 kgAlmeida
13
63 kgSwirbul
14
65 kgBoivin
17
78 kgMccormick
18
72.5 kgZimmer
19
68 kgStetina
20
63 kgSchönberger
21
64 kgBadilatti
22
62 kgȚvetcov
23
69 kgFortunato
24
57 kgBowden
28
65 kgVermaerke
30
67 kg
1
72 kgCanola
2
66 kgHermans
3
72 kgCraddock
4
69 kgMarengo
5
69 kgMurphy
6
67 kgEg
7
60 kgÁvila
8
61 kgPiccoli
11
65 kgDombrowski
12
68 kgAlmeida
13
63 kgSwirbul
14
65 kgBoivin
17
78 kgMccormick
18
72.5 kgZimmer
19
68 kgStetina
20
63 kgSchönberger
21
64 kgBadilatti
22
62 kgȚvetcov
23
69 kgFortunato
24
57 kgBowden
28
65 kgVermaerke
30
67 kg
Weight (KG) →
Result →
78
57
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | CANOLA Marco | 66 |
3 | HERMANS Ben | 72 |
4 | CRADDOCK Lawson | 69 |
5 | MARENGO Umberto | 69 |
6 | MURPHY Kyle | 67 |
7 | EG Niklas | 60 |
8 | ÁVILA Edwin | 61 |
11 | PICCOLI James | 65 |
12 | DOMBROWSKI Joe | 68 |
13 | ALMEIDA João | 63 |
14 | SWIRBUL Keegan | 65 |
17 | BOIVIN Guillaume | 78 |
18 | MCCORMICK Hayden | 72.5 |
19 | ZIMMER Matt | 68 |
20 | STETINA Peter | 63 |
21 | SCHÖNBERGER Sebastian | 64 |
22 | BADILATTI Matteo | 62 |
23 | ȚVETCOV Serghei | 69 |
24 | FORTUNATO Lorenzo | 57 |
28 | BOWDEN Scott | 65 |
30 | VERMAERKE Kevin | 67 |