Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zabelinskaya
2
52 kgPavlukhina
4
68 kgPlichta
5
60 kgBoyarskaya
6
67 kgDuval
9
53 kgSomrat
12
56 kgChursina
13
52 kgMoberg
20
56 kgNorman Leth
22
68 kgNontasin
29
58 kgFournier
33
60 kgJeuland-Tranchant
34
61 kgFrapporti
39
63 kgGu
47
55 kgErić
48
53 kgSaifutdinova
52
57 kgKajihara
53
59 kgManeephan
55
59 kgParkinson
60
51 kgHatteland Lima
63
65 kg
2
52 kgPavlukhina
4
68 kgPlichta
5
60 kgBoyarskaya
6
67 kgDuval
9
53 kgSomrat
12
56 kgChursina
13
52 kgMoberg
20
56 kgNorman Leth
22
68 kgNontasin
29
58 kgFournier
33
60 kgJeuland-Tranchant
34
61 kgFrapporti
39
63 kgGu
47
55 kgErić
48
53 kgSaifutdinova
52
57 kgKajihara
53
59 kgManeephan
55
59 kgParkinson
60
51 kgHatteland Lima
63
65 kg
Weight (KG) →
Result →
68
51
2
63
# | Rider | Weight (KG) |
---|---|---|
2 | ZABELINSKAYA Olga | 52 |
4 | PAVLUKHINA Olena | 68 |
5 | PLICHTA Anna | 60 |
6 | BOYARSKAYA Natalia | 67 |
9 | DUVAL Eugénie | 53 |
12 | SOMRAT Phetdarin | 56 |
13 | CHURSINA Anastasiia | 52 |
20 | MOBERG Emilie | 56 |
22 | NORMAN LETH Julie | 68 |
29 | NONTASIN Chanpeng | 58 |
33 | FOURNIER Roxane | 60 |
34 | JEULAND-TRANCHANT Pascale | 61 |
39 | FRAPPORTI Simona | 63 |
47 | GU Sungeun | 55 |
48 | ERIĆ Jelena | 53 |
52 | SAIFUTDINOVA Natalya | 57 |
53 | KAJIHARA Yumi | 59 |
55 | MANEEPHAN Jutatip | 59 |
60 | PARKINSON Abby-Mae | 51 |
63 | HATTELAND LIMA Tone | 65 |