Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Jeuland-Tranchant
2
61 kgFrapporti
6
63 kgMoberg
7
56 kgSaifutdinova
9
57 kgZabelinskaya
12
52 kgPavlukhina
13
68 kgFournier
16
60 kgGu
17
55 kgNorman Leth
18
68 kgManeephan
30
59 kgErić
31
53 kgParkinson
36
51 kgDuval
43
53 kgNuntana
46
55 kgSomrat
49
56 kgPlichta
54
60 kgNontasin
56
58 kgChursina
59
52 kgBoyarskaya
64
67 kgHatteland Lima
69
65 kgKajihara
72
59 kg
2
61 kgFrapporti
6
63 kgMoberg
7
56 kgSaifutdinova
9
57 kgZabelinskaya
12
52 kgPavlukhina
13
68 kgFournier
16
60 kgGu
17
55 kgNorman Leth
18
68 kgManeephan
30
59 kgErić
31
53 kgParkinson
36
51 kgDuval
43
53 kgNuntana
46
55 kgSomrat
49
56 kgPlichta
54
60 kgNontasin
56
58 kgChursina
59
52 kgBoyarskaya
64
67 kgHatteland Lima
69
65 kgKajihara
72
59 kg
Weight (KG) →
Result →
68
51
2
72
# | Rider | Weight (KG) |
---|---|---|
2 | JEULAND-TRANCHANT Pascale | 61 |
6 | FRAPPORTI Simona | 63 |
7 | MOBERG Emilie | 56 |
9 | SAIFUTDINOVA Natalya | 57 |
12 | ZABELINSKAYA Olga | 52 |
13 | PAVLUKHINA Olena | 68 |
16 | FOURNIER Roxane | 60 |
17 | GU Sungeun | 55 |
18 | NORMAN LETH Julie | 68 |
30 | MANEEPHAN Jutatip | 59 |
31 | ERIĆ Jelena | 53 |
36 | PARKINSON Abby-Mae | 51 |
43 | DUVAL Eugénie | 53 |
46 | NUNTANA Supaksorn | 55 |
49 | SOMRAT Phetdarin | 56 |
54 | PLICHTA Anna | 60 |
56 | NONTASIN Chanpeng | 58 |
59 | CHURSINA Anastasiia | 52 |
64 | BOYARSKAYA Natalia | 67 |
69 | HATTELAND LIMA Tone | 65 |
72 | KAJIHARA Yumi | 59 |