Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Zabelinskaya
2
52 kgPavlukhina
4
68 kgBoyarskaya
5
67 kgDuval
10
53 kgSomrat
12
56 kgChursina
13
52 kgPlichta
15
60 kgMoberg
19
56 kgSaifutdinova
21
57 kgNorman Leth
24
68 kgNontasin
32
58 kgJeuland-Tranchant
34
61 kgFrapporti
38
63 kgFournier
40
60 kgParkinson
43
51 kgGu
49
55 kgErić
52
53 kgHatteland Lima
55
65 kgKajihara
56
59 kgManeephan
58
59 kg
2
52 kgPavlukhina
4
68 kgBoyarskaya
5
67 kgDuval
10
53 kgSomrat
12
56 kgChursina
13
52 kgPlichta
15
60 kgMoberg
19
56 kgSaifutdinova
21
57 kgNorman Leth
24
68 kgNontasin
32
58 kgJeuland-Tranchant
34
61 kgFrapporti
38
63 kgFournier
40
60 kgParkinson
43
51 kgGu
49
55 kgErić
52
53 kgHatteland Lima
55
65 kgKajihara
56
59 kgManeephan
58
59 kg
Weight (KG) →
Result →
68
51
2
58
# | Rider | Weight (KG) |
---|---|---|
2 | ZABELINSKAYA Olga | 52 |
4 | PAVLUKHINA Olena | 68 |
5 | BOYARSKAYA Natalia | 67 |
10 | DUVAL Eugénie | 53 |
12 | SOMRAT Phetdarin | 56 |
13 | CHURSINA Anastasiia | 52 |
15 | PLICHTA Anna | 60 |
19 | MOBERG Emilie | 56 |
21 | SAIFUTDINOVA Natalya | 57 |
24 | NORMAN LETH Julie | 68 |
32 | NONTASIN Chanpeng | 58 |
34 | JEULAND-TRANCHANT Pascale | 61 |
38 | FRAPPORTI Simona | 63 |
40 | FOURNIER Roxane | 60 |
43 | PARKINSON Abby-Mae | 51 |
49 | GU Sungeun | 55 |
52 | ERIĆ Jelena | 53 |
55 | HATTELAND LIMA Tone | 65 |
56 | KAJIHARA Yumi | 59 |
58 | MANEEPHAN Jutatip | 59 |