Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Zabelinskaya
2
52 kgChursina
6
52 kgDuval
7
53 kgPavlukhina
8
68 kgBoyarskaya
9
67 kgSomrat
14
56 kgPlichta
15
60 kgMoberg
19
56 kgSaifutdinova
22
57 kgNorman Leth
24
68 kgNontasin
25
58 kgKajihara
30
59 kgParkinson
42
51 kgFournier
44
60 kgFrapporti
46
63 kgJeuland-Tranchant
47
61 kgGu
52
55 kgHatteland Lima
54
65 kgErić
56
53 kgManeephan
58
59 kg
2
52 kgChursina
6
52 kgDuval
7
53 kgPavlukhina
8
68 kgBoyarskaya
9
67 kgSomrat
14
56 kgPlichta
15
60 kgMoberg
19
56 kgSaifutdinova
22
57 kgNorman Leth
24
68 kgNontasin
25
58 kgKajihara
30
59 kgParkinson
42
51 kgFournier
44
60 kgFrapporti
46
63 kgJeuland-Tranchant
47
61 kgGu
52
55 kgHatteland Lima
54
65 kgErić
56
53 kgManeephan
58
59 kg
Weight (KG) →
Result →
68
51
2
58
# | Rider | Weight (KG) |
---|---|---|
2 | ZABELINSKAYA Olga | 52 |
6 | CHURSINA Anastasiia | 52 |
7 | DUVAL Eugénie | 53 |
8 | PAVLUKHINA Olena | 68 |
9 | BOYARSKAYA Natalia | 67 |
14 | SOMRAT Phetdarin | 56 |
15 | PLICHTA Anna | 60 |
19 | MOBERG Emilie | 56 |
22 | SAIFUTDINOVA Natalya | 57 |
24 | NORMAN LETH Julie | 68 |
25 | NONTASIN Chanpeng | 58 |
30 | KAJIHARA Yumi | 59 |
42 | PARKINSON Abby-Mae | 51 |
44 | FOURNIER Roxane | 60 |
46 | FRAPPORTI Simona | 63 |
47 | JEULAND-TRANCHANT Pascale | 61 |
52 | GU Sungeun | 55 |
54 | HATTELAND LIMA Tone | 65 |
56 | ERIĆ Jelena | 53 |
58 | MANEEPHAN Jutatip | 59 |