Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Fournier
1
60 kgMoberg
5
56 kgErić
8
53 kgGu
9
55 kgManeephan
10
59 kgJeuland-Tranchant
11
61 kgSomrat
12
56 kgZabelinskaya
15
52 kgFrapporti
21
63 kgDuval
23
53 kgChursina
25
52 kgPavlukhina
27
68 kgNontasin
28
58 kgNorman Leth
30
68 kgPlichta
35
60 kgBoyarskaya
48
67 kgKajihara
49
59 kgSaifutdinova
62
57 kgParkinson
67
51 kgHatteland Lima
69
65 kg
1
60 kgMoberg
5
56 kgErić
8
53 kgGu
9
55 kgManeephan
10
59 kgJeuland-Tranchant
11
61 kgSomrat
12
56 kgZabelinskaya
15
52 kgFrapporti
21
63 kgDuval
23
53 kgChursina
25
52 kgPavlukhina
27
68 kgNontasin
28
58 kgNorman Leth
30
68 kgPlichta
35
60 kgBoyarskaya
48
67 kgKajihara
49
59 kgSaifutdinova
62
57 kgParkinson
67
51 kgHatteland Lima
69
65 kg
Weight (KG) →
Result →
68
51
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | FOURNIER Roxane | 60 |
5 | MOBERG Emilie | 56 |
8 | ERIĆ Jelena | 53 |
9 | GU Sungeun | 55 |
10 | MANEEPHAN Jutatip | 59 |
11 | JEULAND-TRANCHANT Pascale | 61 |
12 | SOMRAT Phetdarin | 56 |
15 | ZABELINSKAYA Olga | 52 |
21 | FRAPPORTI Simona | 63 |
23 | DUVAL Eugénie | 53 |
25 | CHURSINA Anastasiia | 52 |
27 | PAVLUKHINA Olena | 68 |
28 | NONTASIN Chanpeng | 58 |
30 | NORMAN LETH Julie | 68 |
35 | PLICHTA Anna | 60 |
48 | BOYARSKAYA Natalia | 67 |
49 | KAJIHARA Yumi | 59 |
62 | SAIFUTDINOVA Natalya | 57 |
67 | PARKINSON Abby-Mae | 51 |
69 | HATTELAND LIMA Tone | 65 |