Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Casagrande
2
64 kgCenghialta
3
73 kgChiappucci
4
67 kgElli
7
71 kgBartoli
11
65 kgZanini
13
80 kgTchmil
15
75 kgTeteriouk
16
72 kgLafis
17
78 kgFrattini
18
60 kgPeron
19
70 kgGuerini
22
65 kgPeeters
26
76 kgPetito
27
78 kgGianetti
32
62 kgMaya
38
58 kgJärmann
42
73 kgBerzin
43
64 kg
2
64 kgCenghialta
3
73 kgChiappucci
4
67 kgElli
7
71 kgBartoli
11
65 kgZanini
13
80 kgTchmil
15
75 kgTeteriouk
16
72 kgLafis
17
78 kgFrattini
18
60 kgPeron
19
70 kgGuerini
22
65 kgPeeters
26
76 kgPetito
27
78 kgGianetti
32
62 kgMaya
38
58 kgJärmann
42
73 kgBerzin
43
64 kg
Weight (KG) →
Result →
80
58
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | CASAGRANDE Francesco | 64 |
3 | CENGHIALTA Bruno | 73 |
4 | CHIAPPUCCI Claudio | 67 |
7 | ELLI Alberto | 71 |
11 | BARTOLI Michele | 65 |
13 | ZANINI Stefano | 80 |
15 | TCHMIL Andrei | 75 |
16 | TETERIOUK Andrei | 72 |
17 | LAFIS Michel | 78 |
18 | FRATTINI Francesco | 60 |
19 | PERON Andrea | 70 |
22 | GUERINI Giuseppe | 65 |
26 | PEETERS Wilfried | 76 |
27 | PETITO Roberto | 78 |
32 | GIANETTI Mauro | 62 |
38 | MAYA Carlos Alberto | 58 |
42 | JÄRMANN Rolf | 73 |
43 | BERZIN Evgeni | 64 |