Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Vastaranta
1
63 kgVeuchelen
2
75 kgGlasner
3
72 kgErmeti
4
60 kgWeening
5
68 kgKohl
6
61 kgVervecken
7
78 kgde Maar
8
70 kgScheuneman
9
75 kgVisconti
10
63 kgKannemeyer
12
67 kgFailli
13
65 kgLorenzetto
15
71 kgBarbé
16
75 kgMonfort
17
66 kgHelminen
18
74 kgGiling
20
72 kgBerthou
23
72 kg
1
63 kgVeuchelen
2
75 kgGlasner
3
72 kgErmeti
4
60 kgWeening
5
68 kgKohl
6
61 kgVervecken
7
78 kgde Maar
8
70 kgScheuneman
9
75 kgVisconti
10
63 kgKannemeyer
12
67 kgFailli
13
65 kgLorenzetto
15
71 kgBarbé
16
75 kgMonfort
17
66 kgHelminen
18
74 kgGiling
20
72 kgBerthou
23
72 kg
Weight (KG) →
Result →
78
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VASTARANTA Jukka | 63 |
2 | VEUCHELEN Frederik | 75 |
3 | GLASNER Björn | 72 |
4 | ERMETI Giairo | 60 |
5 | WEENING Pieter | 68 |
6 | KOHL Bernhard | 61 |
7 | VERVECKEN Erwin | 78 |
8 | DE MAAR Marc | 70 |
9 | SCHEUNEMAN Niels | 75 |
10 | VISCONTI Giovanni | 63 |
12 | KANNEMEYER Tiaan | 67 |
13 | FAILLI Francesco | 65 |
15 | LORENZETTO Mirco | 71 |
16 | BARBÉ Koen | 75 |
17 | MONFORT Maxime | 66 |
18 | HELMINEN Matti | 74 |
20 | GILING Bas | 72 |
23 | BERTHOU Eric | 72 |