Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 33
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Planckaert
1
70 kgSánchez
2
65 kgCapelle
3
75 kgRenier
4
69 kgDe Clercq
5
80 kgFinot
7
65 kgNazon
8
68 kgNazon
9
74 kgHinault
11
63 kgHalgand
13
67 kgLangella
14
76 kgDerepas
15
69 kgSunderland
16
65 kgle Boulanger
17
70 kgAuger
18
78 kgOmloop
19
78 kgGerrikagoitia
21
63 kgFeys
22
80 kgTalabardon
25
67 kgPencolé
30
74 kgAuger
31
78 kgBalčiūnas
32
90 kgRoesems
33
81 kg
1
70 kgSánchez
2
65 kgCapelle
3
75 kgRenier
4
69 kgDe Clercq
5
80 kgFinot
7
65 kgNazon
8
68 kgNazon
9
74 kgHinault
11
63 kgHalgand
13
67 kgLangella
14
76 kgDerepas
15
69 kgSunderland
16
65 kgle Boulanger
17
70 kgAuger
18
78 kgOmloop
19
78 kgGerrikagoitia
21
63 kgFeys
22
80 kgTalabardon
25
67 kgPencolé
30
74 kgAuger
31
78 kgBalčiūnas
32
90 kgRoesems
33
81 kg
Weight (KG) →
Result →
90
63
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Jo | 70 |
2 | SÁNCHEZ Samuel | 65 |
3 | CAPELLE Ludovic | 75 |
4 | RENIER Franck | 69 |
5 | DE CLERCQ Hans | 80 |
7 | FINOT Frédéric | 65 |
8 | NAZON Damien | 68 |
9 | NAZON Jean-Patrick | 74 |
11 | HINAULT Sébastien | 63 |
13 | HALGAND Patrice | 67 |
14 | LANGELLA Anthony | 76 |
15 | DEREPAS David | 69 |
16 | SUNDERLAND Scott | 65 |
17 | LE BOULANGER Yoann | 70 |
18 | AUGER Ludovic | 78 |
19 | OMLOOP Geert | 78 |
21 | GERRIKAGOITIA Gorka | 63 |
22 | FEYS Wim | 80 |
25 | TALABARDON Sébastien | 67 |
30 | PENCOLÉ Franck | 74 |
31 | AUGER Guillaume | 78 |
32 | BALČIŪNAS Linas | 90 |
33 | ROESEMS Bert | 81 |