Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Cooke
1
75 kgBénéteau
2
67 kgHinault
3
63 kgRenier
4
69 kgScheirlinckx
5
67 kgEdaleine
6
62 kgPencolé
7
74 kgMorin
8
79 kgGeslin
9
68 kgBarthe
10
65 kgGarrido
11
70 kgVansevenant
12
65 kgSimon
13
70 kgHalgand
14
67 kgRous
16
70 kgMifune
17
70 kgCappelle
22
71 kgPérez
26
76 kgLaguna
27
61 kg
1
75 kgBénéteau
2
67 kgHinault
3
63 kgRenier
4
69 kgScheirlinckx
5
67 kgEdaleine
6
62 kgPencolé
7
74 kgMorin
8
79 kgGeslin
9
68 kgBarthe
10
65 kgGarrido
11
70 kgVansevenant
12
65 kgSimon
13
70 kgHalgand
14
67 kgRous
16
70 kgMifune
17
70 kgCappelle
22
71 kgPérez
26
76 kgLaguna
27
61 kg
Weight (KG) →
Result →
79
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | COOKE Baden | 75 |
2 | BÉNÉTEAU Walter | 67 |
3 | HINAULT Sébastien | 63 |
4 | RENIER Franck | 69 |
5 | SCHEIRLINCKX Bert | 67 |
6 | EDALEINE Christophe | 62 |
7 | PENCOLÉ Franck | 74 |
8 | MORIN Anthony | 79 |
9 | GESLIN Anthony | 68 |
10 | BARTHE Stéphane | 65 |
11 | GARRIDO Martin Gerardo | 70 |
12 | VANSEVENANT Wim | 65 |
13 | SIMON François | 70 |
14 | HALGAND Patrice | 67 |
16 | ROUS Didier | 70 |
17 | MIFUNE Masahiko | 70 |
22 | CAPPELLE Andy | 71 |
26 | PÉREZ Francisco | 76 |
27 | LAGUNA Oscar | 61 |