Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 44
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Polspoel
1
59 kgDe Vocht
3
61 kgHenttala
4
58 kgHannes
8
51 kgDemey
11
56 kgCant
13
57 kgDruyts
14
62 kgVan Loy
21
65 kgHanselmann
30
55 kgDuyck
31
60 kgArys
34
60 kgKoedooder
37
69 kgBeckers
39
67 kgKuijpers
50
73 kgde Boer
51
57 kgHoffmann
65
62 kgRooijakkers
66
58 kgKopecky
70
66 kgMcNally - de Quint
72
56 kg
1
59 kgDe Vocht
3
61 kgHenttala
4
58 kgHannes
8
51 kgDemey
11
56 kgCant
13
57 kgDruyts
14
62 kgVan Loy
21
65 kgHanselmann
30
55 kgDuyck
31
60 kgArys
34
60 kgKoedooder
37
69 kgBeckers
39
67 kgKuijpers
50
73 kgde Boer
51
57 kgHoffmann
65
62 kgRooijakkers
66
58 kgKopecky
70
66 kgMcNally - de Quint
72
56 kg
Weight (KG) →
Result →
73
51
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | POLSPOEL Maaike | 59 |
3 | DE VOCHT Liesbet | 61 |
4 | HENTTALA Lotta | 58 |
8 | HANNES Kaat | 51 |
11 | DEMEY Valerie | 56 |
13 | CANT Sanne | 57 |
14 | DRUYTS Kelly | 62 |
21 | VAN LOY Ellen | 65 |
30 | HANSELMANN Nicole | 55 |
31 | DUYCK Ann-Sophie | 60 |
34 | ARYS Evelyn | 60 |
37 | KOEDOODER Vera | 69 |
39 | BECKERS Isabelle | 67 |
50 | KUIJPERS Evy | 73 |
51 | DE BOER Sophie | 57 |
65 | HOFFMANN Chantal | 62 |
66 | ROOIJAKKERS Pauliena | 58 |
70 | KOPECKY Lotte | 66 |
72 | MCNALLY - DE QUINT Pia | 56 |