Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Power
1
68 kgRiabushenko
2
61 kgMüller
3
74 kgRota
5
62 kgLizde
6
70 kgFedeli
7
65 kgGhebreindrias
8
68 kgKurianov
9
74 kgSchulze
12
64 kgPaluta
22
65 kgZilio
25
65 kgViel
27
72 kgFortunato
29
57 kgCavanagh
30
72 kgRavanelli
31
66 kgKobernyak
32
59 kgPessot
35
75 kgBackofen
43
62 kgKomin
44
63 kgKatrašnik
46
69 kgGidich
50
69 kg
1
68 kgRiabushenko
2
61 kgMüller
3
74 kgRota
5
62 kgLizde
6
70 kgFedeli
7
65 kgGhebreindrias
8
68 kgKurianov
9
74 kgSchulze
12
64 kgPaluta
22
65 kgZilio
25
65 kgViel
27
72 kgFortunato
29
57 kgCavanagh
30
72 kgRavanelli
31
66 kgKobernyak
32
59 kgPessot
35
75 kgBackofen
43
62 kgKomin
44
63 kgKatrašnik
46
69 kgGidich
50
69 kg
Weight (KG) →
Result →
75
57
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | POWER Robert | 68 |
2 | RIABUSHENKO Alexandr | 61 |
3 | MÜLLER Patrick | 74 |
5 | ROTA Lorenzo | 62 |
6 | LIZDE Seid | 70 |
7 | FEDELI Alessandro | 65 |
8 | GHEBREINDRIAS Amanuel Mengis | 68 |
9 | KURIANOV Stepan | 74 |
12 | SCHULZE Julian | 64 |
22 | PALUTA Michał | 65 |
25 | ZILIO Giacomo | 65 |
27 | VIEL Mattia | 72 |
29 | FORTUNATO Lorenzo | 57 |
30 | CAVANAGH Ryan | 72 |
31 | RAVANELLI Simone | 66 |
32 | KOBERNYAK Evgeny | 59 |
35 | PESSOT Alessandro | 75 |
43 | BACKOFEN Moritz | 62 |
44 | KOMIN Aleksandr | 63 |
46 | KATRAŠNIK Gašper | 69 |
50 | GIDICH Yevgeniy | 69 |